Assignment 2

MATH-F310: Differential Geometry I

October 6, 2022

1. Stereographic projection:

(a) Let S^2 be the standard 2- dimensional sphere of radius 1 centered at the origin in \mathbb{R}^3 . Describe the two stereographic projections from the north and south poles (call them *N* and *S*) respectively. (b) Say, $\phi_N : S^2 \setminus \{N\} \to \mathbb{R}^2$ be one stereographic projection. And we define $\psi_N := \phi_N^{-1} : \mathbb{R}^2 \to S^2 \setminus \{N\} \subset \mathbb{R}^3$. Show that $D\psi_N$ is injective at each point. Thus ψ_N is a parametrization at each point of $S^2 \setminus \{N\}$.

(c) Say ψ_S is the other map: $\mathbb{R}^2 \to S^2 \setminus \{S\}$. Prove that:

$$\psi_{SN} := \psi_S^{-1} \circ \psi_N : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}^2 \setminus \{0\} \text{ is given by}$$
$$\psi_{SN}(u, v) = \frac{1}{u^2 + v^2}(u, v)$$

(d) Any circle that does not pass through the north pole (0, 0, 1), is mapped to a circle on the *xy*-plane: z = 0.

(e) Stereographic projections preserves angles, in the sense that if two curves intersect at an angle θ on the sphere, so do their images curves on the plane z = 0. (to be done after some more classes maybe)

- 2. Show that the cylinder in \mathbb{R}^3 : {(x, y, z) : $x^2 + y^2 = 1$ } can be described locally as a graph of a function from $\mathbb{R}^2 \to \mathbb{R}$. Hence it's a surface.
- 3. Consider the ellipsoid $x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1$. Write down local charts for this surface in \mathbb{R}^3 . Now consider the function $(x, y, z) \mapsto x$ on this surface. Write down the coordinate representation of this function with respect to the charts.
- 4. Consider the hyperboloid $x^2 + \frac{y^2}{4} \frac{z^2}{4} = 1$. For any point on the hyperboloid, find a local chart and compute the transition map between two non-equal overlapping charts. Now consider the function $(x, y, z) \mapsto y^2$ on this surface. Write down the coordinate representation of this function with respect to two different charts of your choice.
- 5. Let $S \subset \mathbb{R}^3$ be a surface. For any smooth function $f : S \to \mathbb{R}$ and any $p \in S, \exists$ an open neighbourhood $W \subset \mathbb{R}^3$ around p and a smooth function $h : W \to \mathbb{R}^3$ such that $h|_{S \cap W} = f|_W$.