Exercise sheet 2

Algebraic Topology

October 17, 2023

Exercise 1. A singular 1-simplex $\sigma: [0,1] \to X$ is called a loop if $\sigma(0) = \sigma(1)$.

- 1. Prove that a loop is an 1-cycle.
- 2. Two loops are called freely homotopic if there is a continuous map $F: [0,1] \times [0,1] \to X$ such that $F(0,t) = \sigma_0(t)$, $F(1,t) = \sigma_1(t)$, and each F(s,...) is a loop. Show that free homotopy defines an equivalence relation on the sets of loops in X.
- 3. Show that two freely homotopic loops are homologous, i.e. they define the same element in $H_1(X)$. Hint: Draw a picture and try to triangularize it.
- 4. A 1-chain $\sigma_0 + \ldots + \sigma_{r-1}$ with $\sigma_i(1) = \sigma_{i-1}(1)$ for all $i \in \mathbb{Z}_r$ is called an elementary 1-cycle. Prove that an elementary 1-cycle is a 1-cycle and it is homologous to a loop.
- 5. Prove that the class of elementary 1-cycles generate $H_1(X)$.

Exercise 2. Let A be a subspace of the topological space X.

1. Assume that there exists a map $r: X \to A$ such that $r|_A$ is the identity map (in that case we call r a retraction map and A a retract of X). For any $k \in \mathbb{Z}$, let r_k be the induced map of r between $H_k(X)$ to $H_k(A)$. Show that

$$H_k(X) \simeq H_k(A) \oplus \ker r_k$$
.

- 2. Assume that there exists a map $R: X \times [0,1] \to X$ such that
 - R(a,t) = a for all $a \in A$ and $t \in [0,1]$,
 - R(x,0) = x for all $x \in X$, and
 - $R(x,1) \in A$ for all $x \in X$

(in that case we call R a deformation retraction map and A a deformation retract of X). Show that $H_k(X)$ is isomorphic to $H_k(A)$ for all $k \in \mathbb{Z}$.

Exercise 3. Let X and Y be topological spaces and let $f_n, g_n : S_n(X) \to S_n(Y)$ be chain maps. We say f_n and g_n are *chain homotopic* if there exists a family of maps $P_n : C_n(X) \to C_{n+1}(Y)$ such that

$$\partial_{n+1}P_n - P_{n-1}\partial_n = f_n - g_n.$$

We say that the spaces X and Y are *chain homotopic* if there are chain maps $f_n: S_n(X) \to S_n(Y)$ and $g_n: S_n(Y) \to S_n(X)$ such that $f_n \circ g_n$ and $g_n \circ f_n$ are chain homotopic to the identity maps.

- 1. Show that if f_n is chain homotopic to g_n , then the induced maps f_*, g_* in homology are equal.
- 2. Show that if X is chain homotopic to Y, then $H_k(X) \simeq H_k(Y)$ for all $k \in \mathbb{Z}$.

Exercise 4. See Exercise 2.35 in the lecture notes: Show that the Bockstein homomorphism ∂ is a group homomorphism.

Exercise 5. Let X be a topological space equipped with a triangulation C_k^{Δ} . The simplicial homology of X with real coefficients $H_k^{\Delta}(X,\mathbb{R})$ is computed as the ordinary simplicial homology, but taking combination with real coefficients instead of integer coefficients. In particular the n-chains with real coefficients are a real vector space and the boundary maps are linear maps. The Euler characteristic of X is defined as

$$\chi(X) = \sum_{k} (-1)^k \dim H_k^{\Delta}(X, \mathbb{R}).$$

Show that $\chi(X) = \sum_k (-1)^k \dim C_i^{\Delta}(X, \mathbb{R})$. Compute the Euler characteristic of S^2 and T^2 .

Cool fact 1. If you have a compact surface Σ you can actually calculate $\chi(X)$ by integration over a certain function, called the Gauss curvature. This result, called the Gauss-Bonnet theorem, is one of the magical relations between algebraic topology and differential geometry.

Cool fact 2. There are generalisations of the Gauss-Bonnet theorem that actually pop up in particle physics!