Exercise sheet 3

Algebraic Topology

October 24, 2023

Exercise 1. Let X be a topological space and $A \subseteq X$.

1. Show that if $A=\emptyset$, then $H_{k}(X, A)=H_{k}(X)$ for all $k \in \mathbb{Z}$.
2. Assume that X has n connected components. Show that if $A=\left\{x_{0}\right\}$, then

$$
H_{k}(X, A) \simeq \begin{cases}\mathbb{Z}^{n-1} & k=0 \\ H_{k}(X) & \text { else }\end{cases}
$$

Exercise 2.

1. Identify S^{1} as the equator inside S^{2}. Calculate $H_{k}\left(S^{2}, S^{1}\right)$ for all $k \in \mathbb{Z}$.
2. Let $S^{2} \sqcup S^{2}$ be two disjoint spheres and let p_{1}, p_{2} be the respective north poles. Calculate $H_{k}\left(S^{2} \sqcup S^{2},\left\{p_{1}, p_{2}\right\}\right)$ for all $k \in \mathbb{Z}$.
3. Compare the above results. Is there a geometric reason why the above homology groups are isomorphic?

Exercise 3. See exercise 2.38 in the lecture notes: Let X and Y be topological spaces and let $A \subseteq X$ and $B \subseteq Y$. Let $f: X \rightarrow Y$ be a map such that $f(A) \subseteq B$. Denote the restriction of f to A as \hat{f}. Show that the induced maps in homology make the following diagram commute:

Exercise 4. Let $0 \rightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \rightarrow 0$ be a short exact sequence of complexes. Show that the induced exact sequence in homology

$$
\ldots H_{k}(A) \xrightarrow{\alpha} H_{k}(B) \xrightarrow{\beta} H_{k}(C) \xrightarrow{\delta} H_{k-1}(A) \xrightarrow{\alpha} H_{k-1}(B) \rightarrow \ldots
$$

is indeed exact. That is, show that

1. $\operatorname{im} \alpha=\operatorname{ker} \beta$,
2. $\operatorname{im} \beta=\operatorname{ker} \delta$,
3. $\operatorname{im} \delta=\operatorname{ker} \alpha$.
