Exercise sheet 7

Algebraic Topology

November 28, 2023

Exercise 1. Recall from Example 3.8, 3.9 and 3.31 that there is a natural way to embed $\mathbb{C} P^{n}$ and $\mathbb{R} P^{n}$ inside $\mathbb{C} P^{n+1}$ and $\mathbb{R} P^{n+1}$ respectively. Hence define

$$
\mathbb{C} P^{\infty}=\bigcup_{n \in \mathbb{N}} \mathbb{C} P^{n} \text { and } \mathbb{R} P^{\infty}=\bigcup_{n \in \mathbb{N}} \mathbb{R} P^{n}
$$

Equip $\mathbb{C} P^{\infty}$ and $\mathbb{R} P^{\infty}$ with a CW-complex and show that

$$
H_{k}\left(\mathbb{C} P^{\infty}\right)=\left\{\begin{array}{lll}
\mathbb{Z} & k \equiv 0 & \bmod 2 \\
0 & k \equiv 1 & \bmod 2
\end{array}\right.
$$

and

$$
H_{k}\left(\mathbb{R} P^{\infty}\right)= \begin{cases}\mathbb{Z} & k=0 \\ \mathbb{Z}_{2} & k \equiv 1 \quad \bmod 2 \\ 0 & \text { else }\end{cases}
$$

Exercise 2. Compute the homology groups of the following 2-complexes:

1. The quotient of S^{2} obtained by identifying the north and south pole to a point.
2. $S^{1} \times\left(S^{1} \vee S^{1}\right)$
3. The space obtained from a closed disk D^{2} by first deleting the interiors of two distjoint subdisks in the interior of D^{2} and then identifying all the three resulting boundary circles together via homeomorphisms preserving clockwise orientations of these circles.
4. The quotient space $S^{1} \times S^{1}$ obtained by identifying points in the circle $S^{1} \times\left\{y_{0}\right\}$ that differ by $2 \pi / m$ rotation and identifying points in the circle $\left\{x_{0}\right\} \times S^{1}$ that differ by $2 \pi / n$ rotation.

Exercise 3. Let X be the quotient space of S^{2} under the identifications $x \sim-x$ for x in the equator S^{1}. Show that the cellular homology of X equals

$$
H_{k}(X) \simeq \begin{cases}\mathbb{Z} & \text { for } k=0,2 \\ \mathbb{Z}_{2} & \text { for } k=1 \\ 0 & \text { else }\end{cases}
$$

Do the same for S^{3} with the antipodal points of the equatorial $S^{2} \subset S^{3}$ identified.

