Exercise sheet 9

Algebraic Topology

December 12, 2023

Exercise 1. See Corollary 4.16. Show that the fundamental group of T^{2} is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ and that the fundamental group of $\mathbb{R} P^{n}$ is \mathbb{Z}_{2} for $n \geq 2$.

Exercise 2. Let X be a topological space that is the union of two path-connected open sets A and B. Assume that there exists an $x_{0} \in A \cap B$ and that $A \cap B$ is path-connected.

1. Show that there is a surjective group homomorphism $\Phi: \pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(B, x_{0}\right) \rightarrow$ $\pi_{1}\left(X, x_{0}\right)$, where $*$ denotes the free group product.
2. Conclude that $\pi_{1}\left(S^{1} \vee S^{1}\right)=\frac{\mathbb{Z} * \mathbb{Z}}{G}$ where G is a normal subgroup of $Z * \mathbb{Z}$.
3. In the next exercise we will show $\pi_{1}\left(S^{1} \vee S^{1}\right)=\pi_{1}\left(S^{1}\right) * \pi_{1}\left(S^{1}\right)$. Can you give an example where $\pi_{1}\left(X, x_{0}\right) \neq \pi_{1}\left(A, x_{0}\right) * \pi_{1}\left(B, x_{0}\right)$? What could be the issue? (For comparison, when is $H_{1}(X) \neq H_{1}(A) \oplus H_{1}(B)$?)

Figure 1: Universal cover of of $S^{1} \vee S^{1}$

Exercise 3. Let X be the infinite CW-complex ${ }^{1}$ depicted in figure 1 .

1. Show that X is path-connected and simply connected.
2. On the set of vertices of X, one can define the following $\langle a, b\rangle=\mathbb{Z} * \mathbb{Z}$ action using the following rules:

- We start with the empty word e.
- Every time we traverse one edge to the right, we add the letter a to our word.
- Every time we traverse one edge to the left, we add the letter a^{-1} to our word.
- Every time we traverse one edge up, we add the letter b to our word.
- Every time we traverse one edge down, we add the letter b^{-1} to our word.

Show that this $\mathbb{Z} * \mathbb{Z}$ action extends to an action on X.
3. Show that $X / \mathbb{Z} * \mathbb{Z}$ is homotopic to $S^{1} \vee S^{1}$.

Hint. How does $\mathbb{Z} * \mathbb{Z}$ act on the $C W$-structure of X ?
4. Show that X is the universal cover of $S^{1} \vee S^{1}$.
5. Prove that $\pi_{1}\left(S^{1} \vee S^{1}\right)=\mathbb{Z} * \mathbb{Z}$.

Exercise 4. We can regard $\pi_{1}\left(X, x_{0}\right)$ as the set of basepoint-preserving homotopy classes of maps $\left(S^{1}, x_{0}\right) \rightarrow\left(X, x_{0}\right)$. Let $\left[S^{1}, X\right]$ be the set of homotopy classes of maps $S^{1} \rightarrow X$, with no conditions on the basepoints. Thus, there is a natural map $\Phi: \pi_{1}\left(X, x_{0}\right) \rightarrow\left[S^{1}, X\right]$ obtained by ignoring basepoints. Show that Φ is onto if X is path-connected, and that $\Phi([f])=\Phi([g])$ iff $[f]$ and $[g]$ are conjugate in $\pi_{1}\left(X, x_{0}\right)$.

[^0]
[^0]: ${ }^{1}$ We do not require that X has the induced subspace-topology of \mathbb{R}^{2}.

