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Chapter 1

Introduction

The main purpose of this chapter is to explain informally the main ideas which will be developed
in details later. In particular, the proofs are rather sketchy stressing main ideas only. More
precise statements and proofs will be given in the subsequent chapters.

1.1 Differential forms, the theorems of Green and Stokes
Let ω = P (x, y)dx + Q(x, y)dy be a 1-form on an open subset U ⊂ R2. For example, if
f : U → R is a smooth map, then the differential df = ∂f

∂x
dx+ ∂f

∂y
dy is a 1-form.

Question 1.1. Under which circumstances does there exist some function f as above such that
ω = df?

Clearly, we have the following necessary condition:

∂P

∂y
=
∂Q

∂x
. (1.2)

Proposition 1.3. If U is convex, then (1.2) is also sufficient.

Sketch of proof. Theorem of Green =⇒ For any closed piecewise smooth curve C ⊂ U
without self-intersections we have∫

C

(P dx+Qdy) =

∫∫
D

(∂Q
∂x
− ∂P

∂y

)
dx dy = 0, (1.4)

where D is the domain bounded by C. Notice that here we use the convexity of U , since
otherwise C does not necessarily bound any domain.

Pick any (x0, y0) ∈ U . For any (x, y) ∈ U choose a curve C ′ connecting (x0, y0) and (x, y).
Define

f(x, y) :=

∫
C′
P dx+Qdy.

Property (1.4) guaranties that f does not depend on the choice of C ′. □

The following example shows that (1.2) is not sufficient for general U .

Example 1.5. Consider U = R2 \ {0} and

ω = − y

x2 + y2
dx+

x

x2 + y2
dy.

2
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If there were some f such that ω = df , then we would have
∫
S1 ω = 0, where S1 is the circle (for

example, parametrized via t 7→ (cos t, sin t)). This is a contradiction, since
∫
S1 ω = 2π ̸= 0.

Notice that the proof of Proposition 1.2 does not work here, since the theorem of Green does
not apply for (D,ω), where D is the unit disc.

Remark 1.6. One can show that for any closed piecewise smooth curve C ⊂ R2 \ {0} we have

1

2π

∫
C

(
− y

x2 + y2
dx+

x

x2 + y2
dy

)
is an integer.

Let U be an open subset of R3 and ω = P dx +Qdy + Rdz be a 1-form. We can also ask
whether ω = df for some f : U → R. Clearly, we have the following necessary condition:

∂R

∂y
=
∂Q

∂z
,

∂P

∂z
=
∂R

∂x
, and

∂Q

∂x
=
∂P

∂y
. (1.7)

Proposition 1.8. If U is convex, then (1.7) is also sufficient.

The proof of this proposition is analogous to the proof of the previous one. Just instead of
the theorem of Green we have to use the theorem of Stokes:∫
C

P dx+Qdy+Rdz =

∫∫
Σ

(∂R
∂y
− ∂Q
∂z

)
dy dz+

(∂P
∂z
− ∂R
∂x

)
dz dx+

(∂Q
∂x
− ∂P
∂y

)
dx dy.

Proposition 1.9. Condition (1.7) is also sufficient for R3 \ {0}.

Sketch of proof. LetC ⊂ R3 be an arbitrary simple picewise smooth curve without self-intersections.
Then there is a picewise smooth surface Σ ⊂ R3 such that ∂Σ = C. If 0 ∈ Σ, a (small)
perturbation yields a surface Σ′ ⊂ R3 \ {0} such that ∂Σ′ = C. □

For a general U , Condition (1.7) is still insufficient, which is easily seen for the following
example: U = R3 \ {z − Axis} and

ω = − y

x2 + y2
dx+

x

x2 + y2
dy.

From this discussion we can make the following informal conclusion: Condition (1.7) is
sufficient as long as U has no “holes” of codimension 2.

1.2 Ansatz of a construction.
LetX ⊂ Rn be an arbitrary subset, which is equipped with the induced topology. Define Z1(X)
as a free Abelian group generated by (oriented) closed curves, i.e.,

C ∈ Z1(X) =⇒ C = n1C1 + · · ·+ nkCk, (1.10)

where nj ∈ Z. Define ∫
C

ω :=
∑

nk

∫
Ck

ω.
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Remark 1.11. IfC0 is a closed oriented curve, 2C0 can be understood as “running alongC0 twice
in the same direction”. Similarly, −C0 can be understood as the curve C0 with the opposite
orientation. However, in most cases we treat (1.10) purely formally.

Assume temporarily that X is an open subset of R2. We would like to define an equivalence
relation such that

C ∼ C ′ =⇒
∫
C

ω =

∫
C′
ω

holds for all ω = P dx + Qdy satisfying (1.2). The theorem of Green (or Stokes in the case
U ⊂ R3) suggests the following:

C ∼ C ′ ⇔ ∃ a compact oriented surface Σ such that ∂Σ = C ∪ −C ′. (1.12)

Here C and C ′ are oriented curves and Σ is an oriented surface such that ∂Σ = C ∪ −C ′ as
oriented curves. This definition also makes sense even in the case when X is not necessarily
open.

More generally, a cycle C = C1 + · · · + Ck is called null homologous, i.e., C ∼ 0, if and
only if

∃ a compact surface Σ such that ∂Σ = C1 ∪ · · · ∪ Cn.

Clearly, Condition (1.12) can be written as C + (−C ′) ∼ 0.

Example 1.13. Null homologous cycles on the 2-sphere with 2 points removed (equivalently,
R2 \ {0}).

Even more generally, each linear combination of null homologous cycles is also declared to
be null homologous.

Z1(X) ⊃ B1(X) = {null homologous cycles}.
H1(X) := Z1(X)/B1(X) the first homology group of X .

Example 1.14. H1(S
2 \ {p, q}) ∼= Z.

Problems: Curves C and surfaces Σ can have singularities and self-intersections.

More generally:

• Zn(X) freely generated by compact oriented n-dimensional “surfaces” without boundary.
• Zn(X) ⊃ Bn(X) the subgroup generated by the boundaries of compact oriented (n+1)-

dimensional “surfaces”.
• Hn(X) := Zn(X)/Bn(X) the nth homology group of X .

In general, we would like to associate to each topological space X a sequence of abelian
groups H0(X), H1(X), . . . , Hn(X), . . . such that the following holds:

(a) Each continuous map f : X → Y induces a sequence of homomorphisms f∗ : Hn(X)→
Hn(Y );

(b) (f ◦ g)∗ = f∗ ◦ g∗, id∗ = id.

(c) H0({pt}) ∼= Z and Hn({pt}) = 0 for all n ≥ 1.

(d) Hn(S
n) ∼= Z provided n ≥ 1 and Hk(S

n) = 0 for all k ≥ n + 1 (More generally,
for each compact connected oriented manifold M of dimension n the following holds:
Hn(M) ∼= Z and Hk(M) = 0 for all k > n+ 1).
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(e) f ≃ g =⇒ f∗ = g∗.

Here two continuous maps are said to be homotopic (f ≃ g), if there exists a continuous map
h : X × [0, 1]→ Y , called homotopy, such that the following holds:

h|X×0 = f and h|X×1 = g.

Question 1.15. What does make Properties (a)-(e) interesting?

This question will be answered in the subsequent sections. We finish this section by the
following fact, which will be useful below.

Proposition 1.16. If f is a homeomorphism, then each f∗ : Hn(X)→ Hn(Y ) is an isomorphism.

Proof. idHn = id∗ = (f ◦ f−1)∗ = f∗ ◦ (f−1)∗ =⇒ f∗ is an isomorphism and (f∗)
−1 =

(f−1)∗. □

1.3 The theorem of Brouwer

In this section we show that (a)-(e) imply the following famous result.

Theorem 1.17 (Brouwer). Any continuous map f : Bn → Bn has a fixed point.

Proof. The proof consists of the following three steps.

Step 1. For the ball Bn := {x ∈ Rn | |x| ≤ 1} we have Hk(Bn) = 0 for all k ≥ 1.

Let c : Bn → {0} be the constant map. The map h(x, t) = tx, t ∈ [0, 1] is a homotopy
between idB und ı ◦c, where ı : {0} → Bn is the inclusion. Thus, id = ı∗ ◦c∗ =⇒ Hk(Bn) = 0
for all k ≥ 1, since Im ı∗ = {0}.

Step 2. There is no continuous map g : Bn → ∂Bn = Sn−1 such that g(x) = x holds for all
x ∈ Sn−1.

Assume n = 1 first. In this case there is no continuous map g : [−1, 1] → {±1} as in the
statement of this step, since the target space {±1} is disconnected, whereas the interval [0, 1] is
connected.

Let us consider now the case n ≥ 2. Assume there is such g : Bn → Sn−1. Then we have

idSn−1 = g ◦ ıSn−1 =⇒ (idSn−1)∗ = g∗ ◦ (ıSn−1)∗ = 0 on Hn−1(S
n−1)

=⇒ Hn−1(S
n−1) = 0.

This contradiction proves Step 2.

Step 3. We prove the theorem of Brower.

Assume there exists a continuous map f : Bn → Bn without fixed points. Then there also
exists a continuous map g : Bn → Sn−1 such that g|Sn−1 = id:
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b

b

f(x)

x

g(x)

This contradicts Step 2. □

1.4 The degree of a continuous map and the fundamental
theorem of algebra

In this section we show that (a)-(e) imply that any non-constant polynomial with complex
coefficients has at least one root. This statement is known as the fundamental theorem of
algebra.

Thus, pick any n ≥ 1 and choose a generator α ∈ Hn(S
n), i.e., an element α such that

Hn(S
n) = Z · α.

Definition 1.18. For any continuous map f : Sn → Sn define deg(f) ∈ Z by

f∗α = deg(f)α.

The degree of a map does not depend on the choice of a generator, since f∗(−α) = −f∗α =
− deg(f)α = deg(f)(−α).

Lemma 1.19. The degree has the following properties:

(i) deg(id) = 1;

(ii) deg(f ◦ g) = deg f · deg g;

(iii) f ≃ g =⇒ deg f = deg g;

(iv) deg(const. map) = 0.

□

Lemma 1.20. For S1 := {z ∈ C | |z| = 1} define fn : S1 → S1 by fn(z) = zn, where n ∈ Z.
Then we have

deg fn = n.

Idea of proof. The curve

α : [0, 2π]→ S1, α(t) = cos t+ sin t i = eti,

generates H1(S
1). Since fn ◦α(t) = enti = cos(nt)+sin(nt)i, from the definition of the degree

and Remark 1.11 we have deg fn = n. □

Draft 6 December 14, 2023



Algebraic topology

Theorem 1.21 (The fundamental theorem of Algebra). Each non-constant polynomial p(z) =
zn + an−1z

n−1 + . . . a1z + a0, aj ∈ C has at least one complex root.

Proof. Identify S1 with S1
r := {z ∈ C | |z| = r} ∼= S1 with the help of the homeomorphism

S1 → S1
r , z 7→ rz.

The proof consists of the following three steps.

Step 1. Let f : C→ C be a continuous map without zeros. Then for each r > 0 the map

f

|f |
: S1

r → S1 (1.22)

is homotopic to the constant map.

Indeed, a homotopy can be given explicitly by

F (z, t) =
f(tz)

|f(tz)|
, z ∈ S1, t ∈ [0, r].

Step 2. Let p(z) = zn+an−1z
n−1+. . . a1z+a0 be a polynomial without zeros. Then there exists

some R > 0 such that the following holds: ∀r ≥ R the restriction of p/|p| to S1
r is homotopic

to fn.

For all z ∈ C such that |z| ≥ 1 we have∣∣an−1z
n−1 + · · ·+ a1z + a0

∣∣ ≤ |an−1||z|n−1 + · · ·+ |a1||z|+ |a0|
≤ nmax{|an−1|, . . . , |a1|, |a0|}|z|n−1

Choose R so that R > nmax{|an−1|, . . . , |a1|, |a0|} and R > 1. For all r ≥ R and all
t ∈ [0, 1] the polynomial

pt(z) = zn + t
(
an−1z

n−1 + · · ·+ a1z + a0
)

has no zeros on S1
r , since∣∣an−1z

n−1 + · · ·+ a1z + a0
∣∣ < Rrn−1 ≤ rn, provided |z| = r.

Then

P (z, t) =
pt(z)

|pt(z)|

∣∣∣
S1
r

is a homotopy between p/|p| and fn viewed as a map on S1
r .

Step 3. We prove the fundamental theorem of algebra.

Assume p is a non-constant polynomial without zeros. Denote

qr(z) =
p(z)

|p(z)|

∣∣∣
S1
r

,

where r ≥ R. Step 2 =⇒ deg qr = n. Step 1 =⇒ deg qr = 0, i.e., n = 0. Thus, p is a
constant polynomial, which is a contradiction. □
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Chapter 2

Singular homology

2.1 Free abelian groups
An abelian group G is called free with a basis A ⊂ G, if ∀g ∈ G there exists a unique
representation g =

∑
a∈A naa, where na ∈ Z and na ̸= 0 for finitely many a ∈ A only.

Any set A generates an abelian group F (A), which is free with a basis A. Indeed, define

F (A) :=
{
f : A→ Z | f(a) ̸= 0 for finitely many a ∈ A only

}
.

Clearly, the functions

fa(x) =

{
1 x = a,

0 otherwise,
a ∈ A

generate F (A), that is F (A) is free with a basis A.

Remark 2.1. For any f ∈ F (A) we have

f =
∑
a∈A

f(a)fa.

In particular, F (A) can be viewed as the group of all finite formal linear combinations
∑

a∈A naa,
where na ∈ Z.

2.2 Singular simplexes
Let x0, x1, . . . , xk be arbitrary points in Rn such that x1−x0, . . . , xk−x0 are linearly independent.

Definition 2.2. The space

∆k = ∆(x0, . . . , xk) =
{
x =

k∑
i=0

tixi | ti ∈ [0, 1],
k∑
i=0

ti = 1
}

is called the (non-degenerate) k-simplex generated by x0, . . . , xk.

Example 2.3.
0) If k = 0, then ∆(x0) = {x0}.
1) If k = 1, then ∆(x0, x1) is a segment [x0, x1].
2) If k = 2, then ∆(x0, x1, x3) is the triangle with the vertices x0, x1, x2.
3) If k = 3, then ∆(x0, x1, x3, x4) is a tetrahedron with the vertices x0, x1, x3, x4.
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Remark 2.4. The representation x =
∑k

i=0 tixi of a point in ∆k is unique. Indeed,
∑
tixi =∑

sixi,
∑
ti = 1 =

∑
si =⇒

0 =
∑

(ti − si)xi =
∑

(ti − si)xi −
∑

(ti − si)x0 =
∑

(ti − si)(xi − x0) =⇒ ti = si.

The coefficients (t0, t1, . . . , tk) ∈ [0, 1]k+1 are called the barycentric coordinates of the point
x ∈ ∆k. In particular, each k-simplex is homeomorphic to the standard k-simplex

∆k := ∆(e1, . . . , ek, ek+1) ⊂ Rk+1,

where e1, . . . , ek+1 is the standard basis of Rk+1.
It is customary to drop the adjective “non-degenerate” when referring to simplexes. Sometimes

degenerate simplexes (in the sense that x1 − x0, . . . , xk − x0 may be linearly dependent) do
appear below. Typically, this poses no problems, however the barycentric coordinates are ill
defined in this case. L 2

From now on we pick one simplex in each dimension, for example the standard one.

Definition 2.5. Let X be a topological space. A singular k-simplex in X is a continuous map
f : ∆k → X .

In particular, a singular 0-simplex in X can be viewed as a point in X , a singular 1-simplex
as a path in X etc.

Remark 2.6. The map f in the above definition does not need to be injective. In particular, the
image of f may be (highly) singular.

For a singular k-simplex f : ∆k → X the (k − 1)-simplex defined by

∂if : ∆k−1 → X, ∂if(t0, . . . , tk−1) = f(t0, . . . , ti−1, 0, ti, . . . , tk−1)

is called the ith face of f .

f(e0)

f(e1)

f(e2)

∂0f∂1f

∂2f

Figure 2.1: Faces of a singular simplex
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Definition 2.7. Denote by Sk(X) the free abelian group generated by all singular k-simplexes.
Elements of Sk(X) are formal linear combinations of the form

σ =
∑

nifi, ni ∈ Z,

which are called singular k-chains. The (k − 1)-chain

∂f = ∂0f − ∂1f + ∂2f − · · · =
k∑
j=0

(−1)j∂jf,

∂σ =
∑
i

ni
∑
j

(−1)j∂jfi
(2.8)

is called the boundary of f and σ respectively.

Proposition 2.9. The homomorphism

Sk(X)
∂k−−→ Sk−1(X)

∂k−1−−−→ Sk−2(X)

is trivial, that is ∂k−1 ◦ ∂k = 0 (or, simply ∂2 = 0) for all k ≥ 1.

Proof. The proof consists of the following two steps.

Step 1. Let f be a singular simplex. for each j ≥ i we have

∂j∂if = ∂i∂j+1f.

Indeed,
∂j(∂if)(t0, . . . , tk−2) = ∂if(t0, . . . , tj−1, 0, tj, . . . , tk−2)

= f(t0, . . . , ti−1, 0, ti, . . . , tj−1, 0, tj, . . . , tk−2);

∂i(∂j+1f)(t0, . . . , tk−2) = ∂j+1f(t0, . . . , ti−1, 0, ti, . . . , tk−2)

= f(t0, . . . , ti−1, 0, ti, . . . , tj−1, 0, tj, . . . , tk−2).

Step 2. For each singular k-simplex we have ∂(∂f) = 0.

This follows from the following computation:

∂(∂f) =
k−1∑
i=0

(−1)i∂i(∂f) =
k−1∑
i=0

k∑
j=0

(−1)i+j∂i∂jf =
∑
j≥i

+
∑
j<i

(−1)i+j∂i∂jf

=
∑
j≥i

(−1)i+j∂j−1∂if +
∑
j<i

(−1)i+j∂i∂jf

=
∑
p+1≥q

(−1)p+q+1∂p∂qf +
∑
p>q

(−1)p+q∂p∂qf p := j − 1, q := i

= 0.

□

Corollary 2.10. im ∂k ⊂ ker ∂k−1.

The elements of Zk−1(X) := ker ∂k−1 are called cycles and the elements of Bk−1(X) :=
im ∂k are called boundaries.

Definition 2.11. The group

Hk−1(X) := ker ∂k−1/ im ∂k = Zk−1(X)/Bk−1(X)

is called the (k−1) th (singular) homology group of X (with integer coefficients). In particular,
H0(X) := S0(X)/ im ∂1.
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2.3 Some properties of the homology groups
Proposition 2.12.

X path connected =⇒ H0(X) ∼= Z.

Proof. S0(X) is the free abelian group generated by the points of X . Let f be a singular 1-
simplex, that is f : [0, 1]→ X is a path in X . By the definition of the boundary, ∂f = x1 − x0,
where x1 = f(1) and x0 = f(0). By the hypothesis, we can connect any two points in X by a
path, that is for any two points x0, x1 ∈ X we have [x0] = [x1] ∈ H0(X).

Furthermore, define the homomorphism α : S0(X)→ Z by

α
(∑

nixi
)
=

∑
ni.

Since α(∂f) = 0 for each singular 1-simplex (hence, for each singular 1-chain), α yields a
surjective homomorphism H0(X)→ Z, which is still denoted by α.

Suppose α([
∑
nixi]) = 0. Then [

∑
nixi] =

∑
ni[xi] =

(∑
ni
)
[x0] = 0, that is α is

injective. Thus, α is an isomorphism. □

Exercise 2.13. If X is not necessarily path connected, then the following holds: H0(X) ∼= Zm,
where m is the number of path-components of X .

Proposition 2.14.

Hk({pt}) =

{
Z if k = 0,

0 else.

Proof. For k = 0 the statement of this proposition follows from the previous one. Hence, we
may assume k > 0. For each such k there is exactly one k-simplex in {pt}, namely the constant
map, which we denote by ck : ∆k → {pt}. For the boundary we have

∂ck =
k∑
i=0

(−1)i ∂ick︸︷︷︸
ck−1

=

{
0, for k odd,
ck−1 for k even.

Hence,

Zk
(
{pt}

)
=

{
Sk

(
{pt}

)
for k odd,

0 for k even

and

Bk

(
{pt}

)
=

{
Sk

(
{pt}

)
for k odd,

0 for k even.

Thus Hk

(
{pt}

)
= Zk

(
{pt}

)
/Bk

(
{pt}

)
= 0. □

L 3

Definition 2.15. A topological spaceX is said to be contractible if there is a point x0 ∈ X such
that the identity map idX is homotopic to the constant map cx0 .

Proposition 2.16. A contractible space has the same homology groups as a point, that is

Hk(X) =

{
Z if k = 0,

0 if k ≥ 1

whenever X iscontractible.
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Proof. Since X is contractible, there exists a continuous map h : X × [0, 1] → X such that
h(x, 0) = x and h(x, 1) = x0 hold for any x ∈ X . In particular, for a fixed x ∈ X the path
t 7→ h(t, x) connects x and x0. This implies that X is path connected, hence H0(X) ∼= Z by
Proposition 2.12.

Thus, we assume k ≥ 1 in the sequel. Consider the quotient map

π : ∆k−1 × [0, 1]→ ∆k ∼= (∆k−1 × [0, 1])/(∆k−1 × {1})(
(t0, . . . , tk−1), u

)
7→

(
u, (1− u)t0, . . . , (1− u)tk−1

)
.

Define s : Sk−1(X) → Sk(X) as follows: Since π is a quotient map and h|X×{1} ≡ x0, by the
universal property of the quotient map for each singular (k − 1)-simplex σ : ∆k−1 → X there
exists a unique map s(σ) : ∆k → X such that h ◦ (σ × id) = s(σ) ◦ π, that is the diagram

∆k−1 × I π−−−→ ∆k

σ×id
y ys(σ)

X × I h−−−→ X

commutes. Explicitly,

s(σ)(t0, t1, . . . , tk) = h
(
σ
( t1
1− t0

, . . . ,
tk

1− t0

)
, t0

)
whenever t0 ̸= 1 and s(σ)(t1, . . . , tk, 1) = x0. Hence,

1. ∂0(s(σ)) = σ,

2. ∂is(σ) = s(∂i−1σ) for i > 0.

Extending s by linearity to all of Sk−1(X), for any σ ∈ Sk(X) we have

∂(s(σ)) = ∂0(s(σ))−
k∑
i=1

(−1)i−1∂i(s(σ)) = σ −
k−1∑
j=0

(−1)js(∂jσ) = σ − s(∂σ). (2.17)

This yields
∂ ◦ s+ s ◦ ∂ = id.

Hence, if σ is a cycle, then σ = ∂
(
s(σ)

)
+ s

(
∂σ

)
= ∂

(
s(σ)

)
, i.e., any cycle is a boundary. In

other words, Hk(X) = 0 whenever k ≥ 1 as claimed. □

Theorem 2.18. Let f : X → Y be a continuous map. Then for each k ≥ 0 the map f induces
a group homomorphism

f∗ : Hk(X)→ Hk(Y )

and for any other continuous map g : Y → Z we have

(g ◦ f)∗ = g∗ ◦ f∗.

Finally, (idX)∗ = id.
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Proof. Define first group homomorphisms f# : Sk(X)→ Sk(Y ), by declaring

σ 7→ f ◦ σ for σ : ∆k → X.

Then for all singular k-simplexes σ : ∆k → X we have

(f#∂
i(σ))(t0, . . . , tk−1) = f(σ(t0, . . . , ti−1, 0, ti, . . . , tk−1))

= (f#σ)(t0, . . . , ti−1, 0, ti, . . . , tk−1)

= ∂i(f#σ)(t0, . . . , tk−1),

and therefore f#∂i = ∂if#, which yields in turn that f# is a chain map, i.e.,

f#∂ = ∂f#.

This yields in particular that cycles are mapped to cycles and boundaries are mapped to
boundaries:

f#(Zk(X)) ⊂ Zk(Y ) and f#(Bk(X)) ⊂ Bk(Y ).

Hence, we obtain a well defined group homomorphism:

f∗ : Hk(X) = Zk(X)/Bk(X)→ Zk(Y )/Bk(Y ) = Hk(Y )

f∗([σ]) := [f#(σ)].

Furthermore, for each singular k-simplex σ : ∆k → X we have

g# ◦ f#(σ) = g#(f ◦ σ) = g ◦ f ◦ σ = (g ◦ f)#(σ),
g∗ ◦ f∗([σ]) = g∗[f#(σ)] = [g# ◦ f#(σ)] = [(g ◦ f)#(σ)] = (g ◦ f)∗([σ]),
(idX)#(σ) = σ, (idX)∗([σ]) = [(idX)#(σ)] = [σ].

Therefore, g∗ ◦ f∗ = (g ◦ f)∗ and (idX)∗ = id. □

Corollary 2.19. If f : X → Y is a homeomorphism, then f∗ : Hk(X) → Hk(Y ) is an isomor-
phism for each k. □

2.4 Homotopies and homology groups
Theorem 2.20. If f, g : X → Y are homotopic maps, then the induced maps on the homology
groups are equal:

f ≃ g =⇒ f∗ = g∗.

Proof. The proof consists of the following three steps.

Step 1. Define
ηt : X → X × I, ηt(x) = (x, t).

For each continuous map f : X → Y we have (f × id)#ηXt# = ηYt# ◦ f#.

This follows immediately from the observation that the diagram

X
ηXt−−−→ X × I

f

y yf×id
Y

ηYt−−−→ Y × I
commutes.
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Step 2. There exists a sequence of homomorphisms sXk : Sk(X)→ Sk+1(X × I) satisfying

∂sXk + sXk−1∂ = η1# − η0#; (2.21)

(f × idI)# ◦ sXk = sYk ◦ f#. (2.22)

Define sk = sXk recursively. For k = 0 and x0 ∈ X , which we view as a 0-simplex, put

s0σ : ∆
1 → X × I, (t0, t1) 7→ (x0, t1).

Then we have ∂(s0σ) = (x0, 1) − (x0, 0), i.e., (2.21) holds for k = 0. Equation (2.22) follows
directly from the definition of s0.

Suppose sℓ has been defined for all ℓ < k. We define first sk in a special case, namely for
id∆k viewed as an element ık ∈ Sk(∆k). We have

∂
(
η1#ık − η0#ık − sk−1∂ık︸ ︷︷ ︸

∈Sk(∆k×I)

)
= η1#∂ık − η0#∂ık − ∂sk−1∂ık

(2.21)
= η1#∂ık − η0#∂ık −

(
η1#∂ık − η0#∂ık − s∆

k

k−2∂
2ık

)
= 0.

In this computation (2.21) is used with k replaced by k − 1. Since ∆k × I is contractible, there
exists some a ∈ Sk−1(∆

k × I) so that

η1#ık − η0#ık − sk−1∂ık = ∂a.

Define sk(ık) = a. Then (2.21) holds for σ = ık.
In general, define sXk (σ) = (σ × id)#a. Then we have

∂(sXk σ) = ∂(σ × id)#a = (σ × id)#∂a
= (σ × id)#

(
η1#ık − η0#ık − s∆

k

k−1∂ık
)

= η1#σ#ık − η0#σ#ık − sXk−1σ#∂ık (2.22) + Step 1

= η1#σ − η0#σ − sXk−1∂σ.

This proves (2.21).
We still have to show that (2.22) holds. Indeed,

(f × id)#skσ = (f × id)#(σ × id)#a =
(
(f ◦ σ)× id

)
#
a = sk(f ◦ σ) = sk(f#σ).

Step 3. We prove this theorem.

Let h be a homotopy between f and g. From the following equalities

∂(h# ◦ sk) + (h# ◦ sk−1)∂ = h#∂sk + h#(sk−1∂) = h#(η1# − η0#) = f# − g#

we see that f# − g# = ∂(h# ◦ sk) holds on ker ∂. This shows that f∗ = g∗. □
L 4

Definition 2.23. A continuous map f : X → Y is called a homotopy equivalence, if there exists
a continuous map g : Y → X such that the following holds:

g ◦ f ≃ idX and f ◦ g ≃ idY .

In this case the spaces X and Y are called homotopy equivalent.
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Example 2.24. (i) Any two homeomorphic spaces are homotopy equivalent.

(ii) Rn is homotopy equivalent to {pt}. More generally, any contractible space is homotopy
equivalent to {pt}.

(iii) Rn \ {0} is homotopy equivalent to Sn−1.

To see (ii), let X be a contractible space and ıx0 : {x0} → X be the embedding of the point
x0. Then cx0 ◦ ıx0 = idx0 and ıx0 ◦ cx0 ≃ idX .

To see (iii), define f : Rn \ {0} → Sn by f(x) = x/|x|. If g : Sn−1 → Rn \ {0} denotes the
inclusion, then f ◦ g = idSn−1 . Furthermore,

h(x, t) =
1

t+ (1− t)|x|
x, x ∈ Rn \ {0},

is a homotopy between g ◦ f and idRn\{0}.

Corollary 2.25.

f is a homotopy equivalence =⇒ ∀k f∗ : Hk(X)→ Hk(Y ) is an isomorphism.

Example 2.26. Since Rn is homotopy equivalent to a point, we have

Hk(Rn) ∼= Hk

(
{pt}

) ∼= {
Z k = 0,

0 otherwise.

Assuming the homology groups of the n-sphere are known, we have

Hk(Rn \ {pt}) ∼= Hk(S
n−1) ∼=

{
Z k = 0, n− 1,

0 otherwise.

Notice that the latter isomorphism is established in Theorem 2.41 below.

2.5 Exact sequences and the Bockstein homomorphism
Definition 2.27. A sequence of homomorphisms of abelian groups

· · · −→ Ak+1
αk+1−−−→ Ak

αk−−→ Ak−1 −→ . . . (2.28)

is called exact, if for all k the following holds: kerαk = imαk+1.

Some special cases:

(i) 0→ A
α−→ B is exact ⇔ α is injective;

(ii) A α−→ B → 0 is exact ⇔ α is surjective;

(iii) 0→ A
α−→ B → 0 is exact ⇔ α is an isomorphism;

(iv) 0 → A
α−→ B

β−→ C → 0 is exact ⇔ α is injective, β is surjective and ker β =
imα; In particular, β induces an isomorphism C ∼= B/A.

The sequence (iv) is called a short exact sequence.
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Example 2.29. 0 → Z ×n−−→ Z → Z/nZ → 0 is a short exact sequence, where ×n stands for
the multiplication by a fixed n ∈ Z.

Let A be a complex, that is A is a sequence

A : · · · −→ Ak+1
∂−→ Ak

∂−→ Ak−1 −→ . . .

such that ∂2 = 0. Just like in the case of chain complexes, we define the kth homology group
of A to be

Hk(A) :=
ker

(
∂ : Ak → Ak−1

)
im

(
∂ : Ak+1 → Ak

) .
Notice the following: Assuming (2.28) is a complex, i.e., αk+1 ◦ αk = 0 holds for all k, we
obtain that (2.28) is exact if and only if Hk(A) = {0} for all k.

If A, B, and C are complexes, a sequence 0 → A
α−→ B

β−→ C → 0 of complexes is a
commutative diagram of the form

0 0 0y y y
. . .

∂−−−→ Ak+1
∂−−−→ Ak

∂−−−→ Ak−1
∂−−−→ . . .

αk+1

y αk

y αk−1

y
. . .

∂−−−→ Bk+1
∂−−−→ Bk

∂−−−→ Bk−1
∂−−−→ . . .

βk+1

y βk

y βk−1

y
. . .

∂−−−→ Ck+1
∂−−−→ Ck

∂−−−→ Ck−1
∂−−−→ . . .y y y

0 0 0

(2.30)

Such a sequence is called exact, if each vertical sequence 0→ Ak → Bk → Ck → 0 is exact.
Here of course we could equally well consider sequences of complexes consisting of more

than 3 complexes.

Example 2.31. Let X, Y and Z be topological spaces and f : X → Y , g : Y → Z continuous
maps. Then one obtains a sequence of chain complexes

0→ S∗(X)
f#−−→ S∗(Y )

g#−−→ S∗(Z)→ 0,

which is not necessarily exact. What conditions guarantee that the above sequence is exact will
be considered below.

Proposition 2.32. For any homomorphism of complexes α : A→ B we have a homomorphism
α : H∗(A)→ H∗(B) of homology groups, which is still denoted by the same letter.

Proof. This follows immediately from the commutativity of (the upper part of) (2.30). □
L 5

Theorem 2.33. A short exact sequence of complexes 0 → A
α−→ B

β−→ C → 0 induces a
(long) exact sequence of homology groups:

· · · → Hk(A)
α−→ Hk(B)

β−→ Hk(C)
δ−→ Hk−1(A)

α−→ Hk−1(B)→ . . .

Draft 16 December 14, 2023



Algebraic topology

Remark 2.34. The map δ is called the Bockstein homomorphism.

Proof. The proof consists of the following four steps.

Step 1. We define δ.

Pick c ∈ Ck, ∂c = 0. Since βk is surjective, there exists some b ∈ Bk such that β(b) = c.
We have β(∂b) = ∂(β(b)) = ∂c = 0. Since α : Ak−1 → ker βk−1 is surjective, there is some
a ∈ Ak−1 such that α(a) = ∂b. By the commutativity of (2.30), we have α(∂a) = ∂α(a) =
∂2b = 0. Since α is injective, we obtain ∂a = 0 so that we can define δ by

δ[c] = [a].

In order to see that δ is well-defined, pick another representative c′ = c + ∂c′′ of the class [c].
For c′′ ∈ Ck+1 there is some b′′ ∈ Bk+1 such that β(b′′) = c′′ =⇒ β(b+ ∂b′′) = c+ ∂c′′. This
yields b′ = b + ∂b′′ + α(a′′), where a′′ ∈ Ak. Furthermore, ∂b′ = ∂b + 0 + α(∂a′). Since α is
injective, we have a′ = a+ ∂a′′, i.e., [a] = [a′].

Exercise 2.35. Check that δ is a group homomorphism.

Step 2. kerα = im δ.

Pick a ∈ Ak−1 such that [a] ∈ kerα, i.e., α(a) = ∂b for some b ∈ Bk. We have ∂β(b) =
β(∂b) = β(α(a)) = 0. By the construction of δ, we obtain δ[β(b)] = [a]. That is kerα ⊂ im δ.

If a ∈ Ak−1 is such that [a] ∈ im δ, then by the construction of δ, we have α(a) = ∂b =⇒
α[a] = 0.

Step 3. ker δ = im β.

Pick some [c] ∈ ker δ. Using the notations of Step 1, we have a = ∂a′ for some a′ ∈ Ak.
The equations

∂
(
b− α(a′)

)
= ∂b− α(∂a′) = ∂b− α(a) = 0;

β
(
b− α(a′)

)
= β(b) = c;

yield β[b− α(a′)] = [c], i.e., ker δ ⊂ im β.
The inclusion im β ⊂ ker δ follows immediately from the construction of δ.

Step 4. ker β = imα.

Assume b ∈ Bk satisfies β[b] = 0, that is ∂b = 0 and β(b) = ∂c for some c ∈ Ck+1. Since
β is surjective, there is some b̂ ∈ Bk+1 such that β(b̂) = c. Furthermore,

β(b− ∂b̂) = β(b)− ∂β(b̂) = β(b)− ∂c = 0.

This yields that there exists some a ∈ Ak such that α(a) = b− ∂b̂. Moreover,

α(∂a) = ∂α(a) = ∂b− ∂2b̂ = 0.

Since α is injective, we obtain ∂a = 0. This yields α[a] = [b− ∂b̂] = [b], that is ker β ⊂ imα.
The inclusion imα ⊂ ker β follows immediately from α ◦ β = 0. □
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2.6 Relative homology groups
For each subspace A ⊂ X define

Sn(X,A) := Sn(X)/Sn(A).

The boundary map on Sn(X) induces a boundary map on Sn(X,A) and we obtain the following
new chain complex:

· · · → Sn+1(X,A)
∂−→ Sn(X,A)

∂−→ Sn−1(X,A)→ . . .

The homology groups of this complex are denoted by H∗(X,A) and are called the homology
groups of X relative to A, or, simply, relative homology groups. Let us provide some details of
this definition:

• Elements of Hn(X,A) are represented by relative chains a ∈ Sn(X) such that ∂a ∈
Sn−1(A);

• [a] = 0 ∈ Hn(X,A) ⇐⇒ a = ∂b+ c, b ∈ Sn+1(X), c ∈ Sn(A).
By the very definition of Sn(X,A), the sequence 0 → S∗(A) → S∗(X) → S∗(X,A) → 0

is exact. Hence, Theorem 2.33 yields the following:

Theorem 2.36. There is a long exact sequence of the homology groups

· · · → Hn(A)
i∗−−→ Hn(X)

j∗−−→ Hn(X,A)
δ−→ Hn−1(A)→ . . .

Moreover, the following holds:
• i∗ is induced by the inclusion i : A ⊂ X;
• j∗ is induced by the projection Sn(X)→ Sn(X,A);
• δ[a] = [∂a].

□ L 6

Suppose A ⊂ X and B ⊂ Y . A map between pairs of spaces (X,A) and (Y,B) is a map
f : X → Y such that f(A) ⊂ B.

Proposition 2.37. Each map f : (X,A)→ (Y,B) induces a homomorphism of relative homology
groups H∗(X,A)→ H∗(Y,B). □

Exercise 2.38. Show that the Bockstein homomorphism is natural in the following sense. Let
f be as in Proposition 2.37. Denote by f̂ : A→ B the restriction of f to A. Then the diagram

Hn(X,A)
δ−−−→ Hn−1(A)

f∗

y yf̂∗
Hn(Y,B)

δ−−−→ Hn−1(B)

commutes.

Two continuous maps f, g : (X,A)→ (X,B) are called homotopic (as maps between pairs
of spaces), if there exists a continuous map h : (X × I, A× I)→ (Y,B), such that h(·, 0) = f
and h(·, 1) = g. Notice that the homotopy h in this definition satisfies h(A× I) ⊂ B.

Two pairs (X,A) and (Y,B) are said to be homotopy equivalent, if there exist f : (X,A)→
(Y,B) and g : (Y,B) → (X,A) such that g ◦ f ≃ idX and f ◦ g ≃ idY , where idX is viewed
as a map of pairs (X,A) → (X,A) (and similarly for idY ). Just like in the situation of
Corollary 2.25, we have the following result.
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Proposition 2.39. If (X,A) and (Y,B) are homotopy equivalent, thenHk(X,A) andHk(Y,B)
are isomorphic for all k. □

The following theorem, whose proof will be given in Section 2.14 below, turns out to be
a useful tool for the computations of relative homology groups. For the time being, we take
Theorem 2.40 as granted.

Theorem 2.40 (Excision). Assume the subspaces Z ⊂ A ⊂ X satisfy Z̄ ⊂ IntA. Then the
inclusion (X \ Z,A \ Z)→ (X,A) induces an isomorphism of relative homology groups:

H∗(X \ Z,A \ Z) ∼= H∗(X,A).

2.7 The homology groups of the spheres
Theorem 2.41. The following holds:

Hk(S
0) =

{
Z⊕ Z if k = 0;

0 else;
and for n ≥ 1 Hk(S

n) =

{
Z if k = 0, n;

0 else.

Proof. Denote

Sn = {x = (x0, . . . , xn+1) ∈ Sn+1 | xn+1 = 0},
Sn+1
+ := {x ∈ Sn+1 | xn+1 ≥ 0}, Sn+1

− := {x ∈ Sn+1 | xn+1 ≤ 0}.

Notice that Sn+1
± is homeomorphic to Bn+1 = {x ∈ Rn+2 | |x| ≤ 1, xn+1 = 0}. In particular,

Sn+1
± is contractible.

Step 1. The map δ : Hk+1(S
n+1
− , Sn)→ Hk(S

n) is an isomorphism provided k ≥ 1.

By the long exact sequence of the pair (Sn+1
− , Sn) we have

0 = Hk+1(S
n+1
− )→ Hk+1(S

n+1
− , Sn)

δ−→ Hk(S
n)→ Hk(S

n+1
− ) = 0. (2.42)

Hence, δ is an isomorphism.

Step 2. Define

H̃0(S
n) := ker

(
H0(S

n)→ H0(S
n+1
− )

) ∼= {
Z if n = 0,

0 else.

Then δ : H1(S
n+1
− , Sn)→ H̃0(S

n) is an isomorphism.

Recall that for a connected space X a generator of H0(X) is the class of any point. Hence,
if n > 0, then the homomorphism H0(S

n) → H0(S
n+1
− ) induced by the inclusion is in fact

an isomorphism. In particular, H̃0(S
n) = 0 in this case. However, if n = 0, S0 consists of

two points (in particular, has two connected components), whereas S1
− is connected. Hence, the

homomorphism H0(S
0)→ H0(S

1
−) is of the form

Z2 → Z, (a, b) 7→ a+ b

and its kernel is H̃0(S
0) = {(a,−a) | a ∈ Z} ∼= Z.

Furthermore, just like in the previous step, the long exact sequence of the pair (Sn+1
− , Sn)

yields
0 = H1(S

n+1
− )→ H1(S

n+1
− , Sn)

δ−→ H0(S
n)→ H0(S

n+1
− ).

In particular, δ is injective and, hence, an isomorphism onto its image in H0(S
n), which is the

kernel of H0(S
n)→ H0(S

n+1
− ), that is H̃0(S

0).
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Step 3. For all k ≥ 0 and n ≥ 0 the map

j∗ : Hk+1(S
n+1)→ Hk+1(S

n+1, Sn+1
+ ) (2.43)

is an isomorphism.

For k > 0, this follows from the long exact sequence of the pair (Sn+1, Sn+1
+ ):

0 = Hk+1(S
n+1
+ )→ Hk+1(S

n+1)
j∗−−→ Hk+1(S

n+1, Sn+1
+ )→ Hk(S

n+1
+ ) = 0

For k = 0, we have

0 = H1(S
n+1
+ )→ H1(S

n+1)
j∗−−→ H1(S

n+1, Sn+1
+ )→ H0(S

n+1
+ )→ H0(S

n+1)︸ ︷︷ ︸
isomorphism

= Z.

Hence, the third arrow represents the zero homomorphism and, therefore, j∗ is surjective. Since
j∗ is injective, this is an isomorphism.

Step 4. For all k ≥ 0 the inclusion p : (Sn+1
− , Sn)→ (Sn+1, Sn+1

+ ) induces the isomorphism

p∗ : Hk+1(S
n+1
− , Sn)→ Hk+1(S

n+1, Sn+1
+ ). (2.44)

Indeed, denote
Z :=

{
x ∈ Sn+1 | xn+1 ≥ 1

2

}
.

Then the homomorphism Hk+1(S
n+1
− , Sn) → Hk+1(S

n+1 \ Z, Sn+1
+ \ Z) induced by the

inclusion (Sn+1
− , Sn) → (Sn+1 \ Z, Sn+1

+ \ Z) is an isomorphism, since the pairs (Sn+1
− , Sn)

and (Sn+1\Z, Sn+1
+ \Z) are homotopy equivalent. Theorem 2.40 yields that the homomorphism

Hk+1(S
n+1, Sn+1

+ )→ Hk+1(S
n+1\Z, Sn+1

+ \Z) induced by the inclusion is also an isomorphism.
This proves (2.44).

Step 5. We prove this theorem

A combination of the previous steps yields the sequence of isomorphisms

Hk+1(S
n+1)

j∗−−→ Hk+1(S
n+1, Sn+1

+ )
p−1
∗−−→ Hk+1(S

n+1
− , Sn)

δ−→ H̃k(S
n),

where

H̃k(S
n) =

{
H̃0(S

n), if k = 0,

Hk(S
n), if k > 0.

This implies the statement of this theorem. □
L 7

Corollary 2.45. The n-sphere Sn is not contractible for all n ≥ 0. □

For a general topological space X define also

H̃0(X) := ker ε, where ε : H0(X)→ Z, ε
[∑

nixi

]
:=

∑
ni,

and H̃k(X) = Hk(X) for k ≥ 1. Using these notations we have

H̃k(S
n) =

{
Z if k = 0, n;

0 else,

for all n.
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2.8 The hairy ball theorem
Recall (cf. Definition 1.18) that the degree deg f of a continuous map f : Sn → Sn is an integer,
which is determined by the property

f∗a = (deg f) · a for all a ∈ Hn(S
n).

Define the suspension Σf : Sn+1 → Sn+1 of f via

Σf(x0, . . . , xn+1) =

{
(0, . . . , 0, xn+1) if |xn+1| = 1,(
tf(x0

t
, . . . , xn

t
), xn+1

)
if |xn+1| < 1,

where t =
√

1− x2n+1.

Proposition 2.46. deg Σf = deg f .

Proof. By the proof of Theorem 2.41 we have the following commutative diagram

Hn+1(S
n+1)

j∗−−−→ Hn+1(S
n+1, Sn+1

+ )
p−1
∗−−−→ Hn+1(S

n+1
− , Sn)

δ−−−→ Hn(Sn)

Σf∗

y Σf∗

y Σf∗

y f∗

y
Hn+1(S

n+1)
j∗−−−→ Hn+1(S

n+1, Sn+1
+ )

p−1
∗−−−→ Hn+1(S

n+1
− , Sn)

δ−−−→ Hn(Sn).

Denoting α := δ ◦ p−1
∗ ◦ j∗, we obtain

Σf∗(a) = α−1 ◦ f∗ ◦ α(x) = α−1
(
(deg f) · α(a)

)
= (deg f) · a =⇒ deg Σf = deg f.

□

Theorem 2.47. There is no continuous map f : S2n → R2n+1 \ {0} such that f(x) ⊥ x holds
for all x ∈ S2n.

Proof. The proof consists of the following steps.

Step 1. Let
s0 : S

n → Sn, (x0, x1, . . . , xn) 7→ (−x0, x1, . . . , xn),

be the restriction of the reflection in the hyperplane {x0 = 0}. Then deg s0 = −1.

The sequence of isomorphisms

H1(S
1)

j∗−−−→ H1(S
1, S1

+)
p−1
∗−−−→ H1(S

1
−, S

0)
δ−−−→ H̃0(S0)

shows that
σ(t) = (sin 2πt, cos 2πt)

is a generator of H1(S
1). Since s ◦σ(t) = σ(−t), we have s∗[σ] = −[σ] and therefore the claim

of this step holds for n = 1.
If s0 is the reflection on Sn, then Σs0 is the reflection on Sn+1. The induction with respect

to n yields the proof for all n > 1.

Step 2. For the antipodal map A : Sn → Sn, A(x) = −x we have degA = (−1)n+1.

The antipodal map on Sn is the composition of n+ 1 reflections.
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Step 3. If f : Sn → Sn is a continuous map without fixed points, then f ≃ A.

The map

F (x, t) :=
tf(x) + (t− 1)x

|tf(x) + (t− 1)x|

is a well-defined homotopy between f and A.

Step 4. If f : Sn → Sn is a continuous map such that f(x) ̸= −x for all x ∈ Sn, then f is
homotopic to the identity map.

f(x) ̸= −x =⇒ A ◦ f has no fixed points =⇒ A ◦ f ≃ A =⇒ A ◦ A ◦ f ≃ A ◦ A

=⇒ f ≃ id.

Step 5. We prove the hairy ball theorem.

Assume there exists a continuous map f : S2n → R2n+1 \ {0} such that f(x) ⊥ x. By
renormalizing we can assume without loss of generality that f : S2n → S2n. The assumption
f(x) ⊥ x yields in particular that f has no fixed points. By Step 3, f is homotopic to A.

On the other hand, f is homotopic to id by Step 4. This yields a contradiction since

A ≃ f ≃ id =⇒ 1 = deg id = degA = (−1)2n+1 = −1.

□

This theorem is often informally formulated as follows.

Corollary 2.48. One can not comb a hairy ball flat without creating a cowlick. □
L 8

Remark 2.49. Each sphere of odd dimension 2n− 1 ≥ 1 admits a continuous map f : S2n−1 →
R2n \ {0} such that f(x) ⊥ x holds for all x ∈ S2n−1. Indeed,

S2n−1 =
{
x = (x0, x1, x2, x3, . . . , x2n−2, x2n−1) |

∑
x2i = 1

}
f(x) = (x1,−x0, x3,−x2, . . . , x2n−1,−x2n−2).

Proposition 2.50. Let [Sn, Sn] be the set of all homotopy classes of continuous maps Sn → Sn,
where n ≥ 1. The map

[Sn, Sn]→ Z, [f ] 7→ deg f (2.51)

is surjective.

Proof. If n = 1, for each k ∈ Z we have an explicit continuous map fk : S1 → S1 of degree k,
namely fk(z) := zk. If n = 2, we have deg Σfk = deg fk = k. The induction with respect to n
finishes the proof. □

Remark 2.52. It can be shown that (2.51) is even bijective (Theorem of Hopf). Also, [Sn, Sn] is
a group and (2.51) is an isomorphism of groups.
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2.9 Group actions on the spheres
Let G be a group. We say that G acts on a set X if a homomorphism ρ : G→ Aut(X) is given,
where Aut(X) is the group of all bijective maps X → X . An action is called free whenever the
following holds:

∀x ∈ X Stabx := {g ∈ G | ρ(g)(x) = x} = {e}.

If X is in addition a topological space, then we require also that for each g ∈ G the map ρ(g) is
a homeomorphism.

Theorem 2.53. Z/2Z is the only non-trivial group that acts freely on S2n.

Proof. Assume that G ̸= {e} acts on S2n freely. Consider the map

d : G→ {±1}, d(g) = deg(ρ(g)).

Here d takes values in {±1}, since each ρ(g) is a homeomorphism. Furthermore, d(gh) =
deg(ρ(g)ρ(h)) = d(g)d(h), that is d is a group homomorphism.

If g ̸= e, then ρ(g) has no fixed points. By Steps 2 and 3 in the proof of Theorem 2.47, the
following holds: deg ρ(g) = degA = −1, i.e., d has a trivial kernel and is surjective.

Clealy Z/2Z acts freely on S2n:

ρ(e) = id, ρ(1) := A,

where A is the antipodal map. □

Remark 2.54. On the odd-dimensional spheres other non-trivial groups may act freely. For
example, U(1) := {z ∈ C | |z| = 1} ∼= S1 acts on

S2n−1 = {(z0, . . . , zn) ∈ Cn |
∑
|zj|2 = 1}

via the homomorphism

w 7→ fw, fw(z) = (wz0, . . . , wzn).

2.10 Homology groups of graphs
Definition 2.55. A (finite topological) graph is a pair (G, V ), where G is a Hausdorff space and
G ⊃ V is a finite subset. The elements of V are called vertices of G. Besides, we require that
the following holds:

• G \ V consists of finitely many path components e̊1, . . . , e̊J . The closure ej of each
component e̊j is homeomorphic to the interval [0, 1] and is called an edge of G;

• ej \ e̊j consists of two different vertices.

The aim of this section is to prove the following result.

Theorem 2.56. The group H1(G) is free and finitely generated. Moreover, the following holds:

rkH0(G)− rkH1(G) = # vertices−# edges =: χ(G).

The number χ(G) is called the Euler characteristic of G.
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The proof requires some notions and auxiliary claims that we consider first. The proof of
Theorem 2.56 can be found at the end of this section.

Definition 2.57. A subset A ⊂ B is called a deformation retract of B, if the following holds:
There exists a continuous map r : B → A, which is called a retraction, such that the following
holds:

r ◦ ı = idA and ı ◦ r ≃ idB,

where ı : A ⊂ B is the inclusion.

It follows immediately from the above definition that the induced maps

ı∗ : H∗(A)→ H∗(B) and r∗ : H∗(B)→ H∗(A)

are mutually inverse. In particular, both maps are isomorphisms.

Lemma 2.58. Let A be a deformation retract of B, where A ⊂ B ⊂ X . Then the inclusion
ı : (X,A)→ (X,B) induces an isomorphism

ı∗ : H∗(X,A)→ H∗(X,B).

Proof. The proof of this lemma hinges on the following algebraic fact.

Lemma 2.59 (“Five lemma”). Assume the horizontal sequences in the commutative diagram of
abelian groups

A1 −−−→ A2 −−−→ A3 −−−→ A4 −−−→ A5

f1

y f2

y f3

y f4

y f5

y
B1 −−−→ B2 −−−→ B3 −−−→ B4 −−−→ B5

are exact. Furthermore, assume that f2 and f4 are isomorphisms, f1 is an epimorphism, and f5
is a monomorphism. Then f3 is an isomorphism. □

Consider the commutative diagram

Hk(A) −−−→ Hk(X) −−−→ Hk(X,A) −−−→ Hk−1(A) −−−→ Hk−1(X)

ı∗

y id

y ı∗

y ı∗

y id

y
Hk(B) −−−→ Hk(X) −−−→ Hk(X,B) −−−→ Hk−1(B) −−−→ Hk−1(X).

Here the horizontal sequences are long exact sequences of the pairs (X,A) and (X,B). Furthermore,
the first two vertical arrows and the last two ones represent isomorphisms. The proof now
follows from the five lemma. □

From the long exact sequence of the pair
(
[0, 1], {0, 1}

)
we obtain the following result.

Lemma 2.60. The following holds:

Hk

(
[0, 1], {0, 1}

) ∼= {
Z if k = 1,

0 if k > 1.

□
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Proposition 2.61. The inclusion ıj : (ej, ∂ej)→ (G, V ) induces a monomorphism

ıj∗ : Hk(ej, ∂ej)→ Hk(G, V ).

Moreover, the following holds:

Hk(G, V ) =
⊕
j

im ıj∗ ∼=

{
ZJ if k = 1,

0 if k > 1.

Proof. Let fj : [0, 1] → ej be a homeomorphism, aj := f(1
2
), and dj := f([1

4
, 3
4
]). Denote also

A = {a1, . . . , aJ} and D = d1 ⊔ · · · ⊔ dJ . Consider the commutative diagram

Hk

(
dj, dj \ {aj}

) α1−−−→ Hk(ej, ej \ {aj})
β1←−−− Hk(ej, ∂ej)y y y

Hk(D,D \ A)
α2−−−→ Hk(G,G \ A)

β2←−−− Hk(G, V ).

All four horizontal homomorphisms are in fact isomorphisms. Indeed, α1 and α2 are isomorphisms
by excision, β1 and β2 by Lemma 2.58.

Since

Hk(D,D \ A) =
J⊕
j=1

Hk(dj, dj \ {aj}) ∼=
J⊕
j=1

Hk(ej, ∂ej),

we obtain the claim of this proposition. □
L 9

Proof of Theorem 2.56. For the proof we need the following algebraic fact.

Lemma 2.62. Any subgroup of a free abelian group is also free. □

The remaining part of the proof consists of the following three steps.

Step 1. H1(G) is free.

The long exact sequence of the pair (G, V ) yields:

0→ H1(G)→ H1(G, V )→ H0(V )→ H0(G)→ 0. (2.63)

H1(G, V ) is free =⇒ H1(G) is free.

Step 2. Let f : A→ F be an epimorphism between two finitely generated free abelian groups.
Then

A = ker f ⊕ A0,

where f : A0 → F is an isomorphism and ker f is free.

Let f1, . . . , fn be generators of F . Choose b1, . . . , bn ∈ A such that f(bj) = fj . Since
ker f ⊂ A and A is free, kerA is also free. Pick generators a1, . . . , ak of ker f . Then we have
A = Z[a1, . . . , ak, b1, . . . bn]. Indeed, for an arbitrary element a ∈ A we have

f(a) ∈ F =⇒ f(a) =
∑

mjfj =⇒ a−
∑

mjbj ∈ ker f =⇒ a−
∑

mjbj =
∑

piai.

Moreover, the representation a =
∑
mjbj +

∑
piai is unique.
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Step 3. We prove this theorem.

Without loss of generality we can assume that G is path connected. Then (2.63) yields

0→ H1(G)→ H1(G, V )→ H̃0(V )→ 0,

i.e., H1(G, V ) ∼= H1(G)⊕ H̃0(V ). This yields in turn

# edges = rkH1(G, V ) = rkH1(G) + rk H̃0(V ) = rkH1(G) + # vertices− 1.

□

Example 2.64. The circle G = e0 ∪ e1, V = {v1, v2}. We have χ(G) = 0 =⇒ rkH1(G) =
rkH0(G) = 1.

Example 2.65. The wedge product of two circles is a graph shown on Fig. 2.2. Since χ(G) =
−1, we have rkH1(G) = 2.

e1

e2e0

e3

Figure 2.2: The wedge product of two circles.

Definition 2.66. A graph (G, V ) is called planar, if there is an embedding of G into R2, that
is if G can be drawn on the plane such that edges are represented by simple continuous curves
that intersect only at the vertices.

Each connected planar graph decomposes R2 into a finite number of bounded domains,
which are called faces, and an unbounded domain, which is also called a face. Moreover, each
bounded domain is homeomorphic to a disc (a theorem of Schoenflies).

Theorem 2.67 (Euler). For any planar connected graph G we have

# vertices−# edges +# faces = 2. (2.68)

Notice that the unbounded face also counts in (2.68).

Proof. By means of the stereographic projection we can view G as a subspace of S2. Notice
that the unbounded face together with the point at infinity is mapped to a face on S2.

Just like in the proof of Proposition 2.61 we obtain

H2(S
2, G) ∼= ZF and Hk(S

2, G) = 0 for all k /∈ {0, 2 },
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where F is the number of faces. The long homology sequence of the pair (G, V ) yields
H2(G) = 0 and from the long homology sequence of the pair (S2, G) we have

0→ H2(S
2)→ H2(S

2, G)→ H1(G)→ H1(S
2) = 0,

which yields

ZF ∼= Z⊕H1(G) =⇒ F = 1 + rkH0(G)−# vertices +# edges

by Theorem 2.56. Since G is connected by the hypothesis, we have rkH0(G) = 1 and
therefore (2.68) holds. □

Exercise 2.69. Solve the “Three utilities problem”: Suppose there are three cottages on a plane
and each needs to be connected to the water, gas, and electricity companies. Without using a
third dimension or sending any of the connections through another company or cottage, is there
a way to make all nine connections without any of the lines crossing each other?

Hint: to obtain a solution consider the graph K3,3:

Figure 2.3: Graph K3,3.

Assuming K3,3 is planar, show that the following holds:

(i) # faces ≤ 1
2
# edges;

(ii) # edges ≤ 2#vertices− 4.

Deduce from the last property that K3,3 is non-planar.
L 10

2.11 Homology groups of surfaces

2.11.1 The torus
The torus T2 can be understood as a square R with opposite sides being glued as shown on
Fig 2.4.

Let f : R → T2 be the quotient map. Then f(∂R) consists of two circles A and B
intersecting at a point.

Theorem 2.70.

Hk(T2) =


Z for k = 0, 2;

Z2 for k = 1;

0 else.
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Proof. The proof consists of the following three steps.

Step 1. The map f : (R, ∂R)→ (T2, A ∪B) induces an isomorphism

f∗ : H∗(R, ∂R)→ H∗(T2, A ∪B).

Let m be the center of the square R and D a disc centered at m contained in the interior
of R. Just like in the proof of Proposition 2.61 one obtains that all horizontal arrows of the
commutative diagram

Hk

(
R, ∂R

)
−−−→ Hk(R,R \ {m}) ←−−− Hk(D,D \ {m})

f∗

y y yf∗
Hk(T2, A ∪B) −−−→ Hk

(
T2,T2 \ {f(m)}

)
←−−− Hk

(
f(D), f(D) \ {f(m)}

)
represent isomorphisms (to prove this one needs in particular that A ∪ B is a deformation
retract of T2 \ {m}). Since the right vertical arrow represents an isomorphism, we obtain that
the leftmost vertical arrow represents an isomorphism too.

Step 2. If k ≥ 1, then

Hk(T2, A ∪B) ∼=

{
Z for k = 2,

0 else.

The statement of this step follows from the long exact sequence of the pair (R, ∂R) and the
previous step.

Step 3. We prove this theorem.

The non-trivial part of the long exact sequence of the pair (T2, A ∪ B) has the following
form

0→ H2(T2)→ H2(T2, A ∪B)
δ−→ H1(A ∪B)→ H1(T2)→ 0,

where H2(T2, A ∪B) ∼= Z and H1(A ∪B) ∼= Z2 by Example 2.65.
To determine δ, consider the commutative diagram

H2

(
R, ∂R

) δ′−−−→ H1(∂R)

f∗

y yf ′∗
H2(T2, A ∪B)

δ−−−→ H1

(
A ∪B

)
,

Figure 2.4: The torus as a square with opposite sides being glued.

Draft 28 December 14, 2023



Algebraic topology

where f ′ : ∂R → A ∪ B is the restriction of f . The induced map f ′
∗ is trivial (Why?). Since f∗

and δ′ are isomorphisms, δ must be trivial too. This yields

H2(T2) ∼= ker δ = H2(T2, A ∪B) ∼= Z and H1(T2) ∼= H1(A ∪B) ∼= Z2.

This finishes the proof. □

In fact, tracing through the above proof we can work out the generators of H1(T2). Indeed,
it was shown that the inclusion A ∪ B ⊂ T2 induces an isomorphism H1(A ∪ B) → H1(T2).
Hence, the circles A and B generate H1(T2). L 11

2.11.2 The projective plane
The projective plane RP2 can be defined as a square R with the opposite sides being glued as
shown on Figure 2.5.

b

b

Figure 2.5: The real projective plane as a square with opposite sides being glued.

Let f : R→ RP2 be the quotient map. Then, unlike in the case of the torus, A := f(∂R) is
a circle in RP2.

Theorem 2.71.

Hk(RP2) =


Z for k = 0;

Z/2Z for k = 1;

0 else.

Proof. Just like in the proof of Theorem 2.70 we obtain that

f∗ : H∗(R, ∂R)→ H∗(RP2, A)

is an isomorphism. The non-trivial part of the long exact sequence of the pair (RP2, A) is of the
following form:

0→ H2(RP2)→ H2(RP2, A)
δ−→ H1(A)

i∗−−→ H1(RP2)→ 0.

To determine the Bockstein homomorphism δ, consider the commutative diagram

H2

(
R, ∂R

) δ′−−−→ H1(∂R)

f∗

y yf ′∗
H2(RP2, A)

δ−−−→ H1

(
A
)
.
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A short thought yields that f ′
∗ is a multiplication by±2 (Why?), i.e., δ is injective andH1(A)/ im δ ∼=

Z/2Z. In particular,H2(RP2) ∼= ker δ = {0} and i∗ : H1(A)/ im δ → H1(RP2) is an isomorphism
□

2.11.3 The Klein bottle
Just like torus and projective plane, the Klein bottle K can be also defined as a square R with
glued opposite sides as shown on Figure 2.6.

b

b

b

Figure 2.6: The Klein bottle as a square with opposite sides being glued.

Theorem 2.72.

Hk(K) =


Z for k = 0;

Z⊕ Z/2Z for k = 1;

0 else.

The proof of this theorem is left as an exercise. L 12

2.11.4 Connected sum of manifolds
Let me recall the definition of a manifold.

Definition 2.73. A (topological) manifold of dimension n is a Hausdorff space1 M such that
for each point m ∈ M there exists a neighborhood, which is homeomorphic to an open subset
in Rn.

Manifolds of dimension 1 are usually called curves and manifolds of dimension two surfaces.

Exercise 2.74. Show that for each x0 ∈ Rn and r > 0 the open ball B̊r(x0) = {x ∈ Rn |
|x − x0| < r} is homeomorphic to Rn. Furthermore, using this show that each point of a
manifold has a neighborhood homeomorphic to Rn.

Example 2.75.

1In addition, it is required that M satisfies the second countability axiom, i.e., M has at most countable basis
of its topology. This is not crucial for the arguments used below, hence I do not mention this explicitly in the
definition.
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• Rn is an n-manifold; More generally, any open subset of Rn is an n-manifold;
• Sn is an n-manifold;
• The torus, projective plane, and Klein bottle are surfaces;

Let M1 and M2 be two connected manifolds of dimension n. Choose mj ∈ Mj and
homeomorphisms φj : B1(0) → Uj ⊂ Mj such that φj(0) = mj . With the help of the
identification B1(0) \ {0} ∼= Sn−1 × (0, 1), φj induces a homeomorphism Sn−1 × (0, 1) →
Uj \ {mj}.

Definition 2.76. The space

M1#M2 :=
(
M1 \ {m1} ⊔ M2 \ {m2})/ ∼, where

φ1(x, r) ∼ φ2(x, 1− r), x ∈ Sn−1 and r ∈ (0, 1),

is called the connected sum of M1 and M2.

M1 M2

M\{m1}

M2\{m2}

M1 # M2

Figure 2.7: Connected sum of two surfaces.

Exercise 2.77. Show that M1#M2 is a manifold of dimension n and does not depend on the
choices involved in the construction (meaning the following: For any other choice of points mj

and homeomorphisms φj the results of the above construction are homeomorphic).

2.11.5 Compact surfaces
Denote

Σ0 = S2, Σ1 = T2, Σ2 = T2#T2, . . . , Σg = #gT2.
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Figure 2.8: Σ2 from a decagon.

Proposition 2.78. The surface Σ2 can be constructed from the Decagon via gluing of sides as
indicated on Fig. 2.8.

Proof. First construct the “connected sum of squares” as shown on Figure 2.9. To obtain Σ2

from this we still need to glue the opposite sides of the two “squares” as indicated on the picture.
Pick a segment connecting two vertices of the squares as shown on the Figure 2.9 (the

colored segment) and cut the “connected sum” along this segment. The result of this is a
decagon. This means that we can obtain Σ2 after gluing appropriate sides of this decagon. □

Figure 2.9: The connected sum of two tori represented by squares.

Induction with respect to g yields the following.
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Corollary 2.79. For each g ≥ 1 the surface Σg can be constructed from (6g − 2)-gon R6g−2

via gluing of sides. □

Remark 2.80. The representation of Σg in the above corollary is not optimal in the following
sense: Σg can be obtained from a (2g+2)-gon via gluing of sides. For our purposes the existence
of some representation will suffice.

By the inspection of the construction of Σg from R6g−2 just like in the proof of Step 3 of
Theorem 2.70, we obtain the following.

Proposition 2.81. If f : R6g−2 → Σg denotes the quotient map, then the induced homomorphism
H1(∂R6g−2)→ H1

(
f(∂R6g−2)

)
is trivial. □

Theorem 2.82. We have

Hk(Σg) =


Z if k = 0, 2;

Z2g if k = 1;

0 else.
(2.83)

□

The proof of this theorem uses Proposition 2.81 and the argument is parallel to the one used
in the proof of Theorem 2.70. The details are left to the reader.

Denote also

S1 := RP2, S2 = RP2#RP2 und Sg = Sg−1#RP2.

Just like in Theorem 2.82 one can show, that the homology groups of Sg are given by

Hk(Sg) =


Z if k = 0;

Zg−1 ⊕ Z/2Z if k = 1;

0 else.

In particular, the computations above yield the following.

Proposition 2.84. The surfaces

Σ0, Σ1, . . . ,Σg, . . . , S1, S2, . . . , Sg, . . . (2.85)

are pairwise non-homeomorphic. □

Theorem 2.86 (Classification of curves). Each connected curve (i.e., 1-manifold) is homeo-
morphic either to the interval (0, 1) or to the circle S1.

Proof. See [Mil65] or [GP74]. □

Theorem 2.87 (Classification of compact surfaces). Each compact connected surface is homeo-
morphic to Σg or Sg for some g ≥ 0, that is (2.85) is a complete list of all compact surfaces up
to homeomorphisms. □
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2.12 The Meyer–Vietoris sequence
Let A,B ⊂ X be two subsets. Consider the homomorphisms

i∗ : H∗(A ∩B)→ H∗(A), j∗ : H∗(A ∩B)→ H∗(B),

k∗ : H∗(A)→ H∗(X) and l∗ : H∗(B)→ H∗(X).

Furthermore, define

φ : H∗(A ∩B)→ H∗(A)⊕H∗(B), φ(x) = (i∗(x), j∗(x)) and
ψ : H∗(A)⊕H∗(B)→ H∗(X), ψ(u, v) = k∗(u)− l∗(v).

(2.88)

Theorem 2.89. If X = Int(A) ∪ Int(B), then for all k ∈ N there is a natural homomorphism

∆: Hk(X)→ Hk−1(A ∩B)

such that the sequence

· · · → Hk(A ∩B)
φ−→ Hk(A)⊕Hk(B)

ψ−→ Hk(X)
∆−−→ Hk−1(A ∩B)→ . . . (2.90)

is exact. This sequence is also exact for H̃∗ whenever A ∩B ̸= ∅.

We postpone the proof of this theorem till Section 2.14 below and take this result as granted
for the time being.

Example 2.91 (The spheres). Define

Sn =
{
(x0, . . . , xn) |

∑
x2i = 1

}
,

A := Sn \ {(0, . . . , 0, 1)} ∼= Rn, B := Sn \ {(0, . . . , 0,−1)} ∼= Rn.

Since A ∩B ∼= Rn \ {0} and Sn−1 is a deformation retract of Rn \ {0}, we have the following
exact sequence:

0→ H̃k(S
n)→ H̃k−1(S

n−1)→ 0.

This yields immediately that the homology groups of the spheres are as described in Theorem 2.41. L 13

Example 2.92 (The torus). Let D1 ⊂ D2 ⊂ Int(R) be two discs with the same center. Setting
A := T2 \D1 and B := D2, the following holds:

• The wedge product of two circles (A ∪ B in the notation of Subsection 2.11.1) is a
deformation retract of T2 \D1;

• S1 is the deformation retract of A ∩B.

Using these properties and the Mayer–Vietoris sequence, we have:

0→ H2(T2)→ H1(S
1)

φ−→ H1(T2 \D1)⊕ 0→ H1(T2)→ H̃0(S
1) = 0.

Since φ is the zero homomorphism (why?), we obtain:

H2(T2) ∼= H1(S
1) ∼= Z and H1(T2) ∼= H1(S

1 ∨ S1) ∼= Z2.

Exercise 2.93. Compute the homology groups of the projective plane and the Klein bottle using
the Meyer–Vietoris sequence.
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Definition 2.94. LetX and Y be two topological spaces with chosen points x0 ∈ X and y0 ∈ Y .
The space

X ∨ Y =
(
X ⊔ Y

)
/{x0, y0}

is called the wedge product of (X, x0) and (Y, y0).

Proposition 2.95. If x0 is a deformation retract of a neighborhood U ⊂ X and y0 is a
deformation retract of a neighborhood V ⊂ Y , then

H̃∗
(
X ∨ Y

) ∼= H̃∗(X)⊕ H̃∗(Y ).

Proof. SetA = X∪V andB = Y ∪U . Then U∪V retracts onto the point [x0] = [y0] inX∨Y .
One obtains the claim of this proposition immediately from the Meyer–Vietoris sequence. □

Corollary 2.96. For all n ≥ 1 we have

H̃k

( N∨
j=1

Sn
) ∼= {

ZN if k = n,

0 else.

□

2.13 Homology groups of a pair and a quotient
Let G be an abelian group and K ⊂ H ⊂ G subgroups. Recall that this yields the following
exact sequence:

0→ H/K → G/K → G/H → 0

For B ⊂ A ⊂ X , this yields the following exact sequence

0→ S∗(A,B)→ S∗(X,B)→ S∗(X,A)→ 0.

By Theorem 2.33 we obtain the long exact sequence of the triple (X,A,B):

· · · → Hn(A,B)→ Hn(X,B)→ Hn(X,A)→ Hn−1(A,B)→ . . .

Theorem 2.97. Let A ⊂ X be a closed subset such that A is a deformation retract of a
neighborhoodU ⊃ A. Then the quotient map q : (X,A)→ (X/A,A/A) induces an isomorphism

q∗ : H∗(X,A)→ H∗(X/A,A/A) ∼= H̃∗(X/A).

Proof. The proof consists of the following two steps.

Step 1. ı∗ : H∗(X,A)→ H∗(X,U) is an isomorphism.

Since A is a deformation retract of U , we have that the map H∗(A) → H∗(U) induced by
the inclusion is an isomorphism. From the long exact sequence of the pair (U,A) we obtain that
H∗(U,A) is trivial. An application of the long exact sequence of the triple (X,U,A)

0 = Hn(U,A)→ Hn(X,A)→ Hn(X,U)→ Hn−1(U,A) = 0

finishes the proof of this step.

Step 2. We prove this theorem.
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Consider the commutative diagram

Hk

(
X,A

)
−−−→ Hk(X,U) ←−−− Hk(X \ A, U \ A)

q∗

y y yq∗
Hk(X/A,A/A) −−−→ Hk

(
X/A,U/A

)
←−−− Hk

(
X/A \ A/A, U/A \ A/A

)
.

By Step 1, the two left horizontal arrows represent isomorphisms. The right horizontal arrows
also represent isomorphisms by excision. The right vertical arrow also represents an isomorphism,
since the restriction of q to the complement of A is a homeomorphism. Hence, q∗ on the left is
also an isomorphism.

Finally, the long exact sequence of the pair (X, x0), where x0 ∈ X , shows that H̃∗(X) and
H∗(X/A,A/A) are isomorphic. □

2.14 Proof of the exactness of the Mayer–Vietoris sequence
and excision

Let U = {Uj} be a family of subsets of X such that {Int(Uj)} is a covering of X . Denote

SU
∗ (X) :=

{∑
i

niσi | ∀i ∃j such that imσi ⊂ Uj

}
.

Clearly, SU
∗ (X) is a subcomplex of S∗(X). Denote by HU

∗ (X) the homology groups of this
complex. The main step in the proof of the excision theorem is the following.

Proposition 2.98. The inclusion ı : SU
∗ (X) → S∗(X) is a chain homotopy equivalence. In

particular, HU
∗ (X) ∼= H∗(X).

Chain homotopy equivalence is not yet defined.

For the proof of this proposition we need some auxiliary claim and constructions. The proof
itself can be found on Page 39 below.

Let ∆ = ∆(x0, . . . , xk) be a simplex in an Euclidean space V . For an arbitrary b ∈ V define
the cone of ∆ by the formula

Cb(∆) = ∆(b, x0, . . . , xk). (2.99)

Geometrically Cb(∆) is the cone of ∆ (at least in the case when b is not contained in the affine
subspace generated by x0, . . . , xk).

The point

b = b(∆) :=
1

k + 1

∑
xj

is called the barycenter of ∆. The barycentric subdivision Sd(∆) is a chain in V , which is
defined recursively in k, namely:

Sd
(
∆(x0)

)
= ∆(x0) if k = 0,

Sd(∆) = Cb(∆)

(
Sd(∂∆)

)
if k > 0.

(2.100)

For example, the barycentric subdivision of the standard 2-simplex is shown on Fig. 2.10.
For an arbitrary subset A ⊂ Rn the diameter of A is defined by

diamA := sup
x,y∈A

|x− y|.
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b

X1X0

X2

Δ2

Δ0Δ1

Figure 2.10: The barycentric subdivision of the standard 2-simplex.

Lemma 2.101. For each simplex ∆′, which appears in the representation of Sd(∆) as a chain,
we have

diam∆′ ≤ k

k + 1
diam∆. (2.102)

Proof. The proof consists of the following two steps.

Step 1. For ∆ = ∆(x0, . . . , xk) we have

diam∆ = max
i,j
|xi − xj|

Pick x ∈ ∆ and set y =
∑
tjxj ∈ ∆, where

∑
tj = 1, tj ∈ [0, 1]. We have

|x− y| =
∣∣x−∑

tjxj
∣∣ = ∣∣∑ tj(x− xj)

∣∣ ≤∑
tj|x− xj|

≤ max
j
|x− xj|.

(2.103)

This yields
|x− y| ≤ max

j
|x− xj| ≤ max

i,j
|xi − xj|.

Step 2. We prove this lemma.

We apply induction with respect to k. For k = 0 Inequality (2.102) clearly holds. Furthermore,
we assume that this inequality also holds for all (k − 1)-simplexes in V . Let ∆′ be a simplex,
which appears in the representation of Sd(∆), that is ∆′ =

(
b(∆), y0, . . . , yk−1

)
, where all yj

are contained in some face ∂j∆ of ∆. By Step 1, we obtain

diam∆′ ≤ max
{
|yi − yj|, |b− yi|

}
.

Furthermore, we have

|yi − yj| ≤ diam∆(y0, . . . , yk−1)

≤ k − 1

k
diam ∂j∆ by the induction hypethesis

≤ k − 1

k
diam∆ ∂j∆ ⊂ ∆

≤ k

k + 1
diam∆ since x 7→ x/(x+ 1) is increasing.
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It remains to show that the inequality

|b− yi| ≤
k

k + 1
diam∆

also holds. Indeed,

|b− yi| ≤ |b− xj| for some j by (2.103)

=
∣∣∣ 1

k + 1

∑
i

xi − xj
∣∣∣ = ∣∣∣ 1

k + 1

∑
i

(xi − xj)
∣∣∣

≤ k

k + 1
max
i
|xi − xj|

≤ k

k + 1
diam∆.

Here we have also used the fact that the second sum in the second line has at most k non-trivial
summands. □

Let X be a convex subset of an Euclidean space and ∆k ⊂ Rk+1 be the standard k-simplex.
A map f : ∆k → X such that

f
(∑

tiyi

)
=

∑
tif(yi) for all yi ∈ ∆k and all ti ≥ 0,

∑
ti = 1

is called an affine simplex in X . Clearly, any affine simplex ∆k → X in X is uniquely
determined by the images of the vertices. In particular, each affine simplex can be identified
with ∆(x0, . . . , xk), where xi = f(ei) ∈ X .

Denote by ASk(X) the free abelian group, which is generated by all affine k-simplexes.
Formula (2.8) defines the boundary map on AS∗, that is (AS∗, ∂) is a chain map. Besides,
define AS−1(X) := Z[∅] and ∂∆(x0) = [∅] for all 0-simplexes ∆(x0).

Proposition 2.104. Map (2.100) together with Sd(∅) := ∅ determines a chain map Sd: AS∗ →
AS∗ with the following properties:

(i) Sd is chain homotopic to the identity homomorphism;

(ii) For each simplex ∆′, which appears in Sd(∆), we have diam∆′ ≤ k
k+1

diam∆.

Proof. The proof consists of the following three steps.

Step 1. For each b ∈ X the homomorphism

Cb : ASk(X)→ ASk+1(X),

which is determined by (2.99) and Cb(∅) = {b}, is a chain homotopy between id and the trivial
homomorphism, that is

∂Cb + Cb∂ = id. (2.105)

The claim of this step follows from the following simple observation:

∂Cb
(
∆(x0, . . . , xk)

)
= ∆(x0, . . . , xk)− ∂Cb

(
∂∆(x0, . . . , xk)

)
.

Step 2. Sd is a chain homomorphism.
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Define additionally Sd(∅) = ∅. To show that Sd is a chain homomorphism, observe first
that Sd = id on AS−1 and AS0 and therefore we have

∂ ◦ Sd = Sd ◦ ∂ (2.106)

on AS−1. For k ≥ 0 the proof of (2.106) is obtained by induction:

∂ Sd∆ = ∂ Cb Sd ∂∆

= Sd ∂∆− Cb(∂ Sd ∂∆) (2.105)
= Sd ∂∆− Cb(Sd ∂ ∂∆) by the induction hypothesis
= Sd ∂∆ ∂2 = 0.

Step 3. Sd is chain homotopic to the identity homomorphism.

Define T : ASk → ASk+1 recursively in k, namely

T (∅) = 0 and T∆ = Cb(∆)

(
∆− T ∂∆

)
.

The property
T ∂ + ∂ T = id− Sd

holds clearly on AS−1. For k ≥ 0 the proof goes just like above by the induction:

∂ T∆ = ∂ Cb
(
∆− T ∂∆

)
= ∆− T ∂∆− Cb

(
∂∆− ∂ T ∂∆

)
(2.105)

= ∆− T ∂∆− Cb
(
∂∆− ∂∆+ Sd ∂∆− T ∂ ∂∆

)
by the induction hypothesis

= ∆− T ∂∆− Sd∆ (2.100).

To finish the proof of this proposition, it remains only to notice that (ii) follows immediately
from (2.100) and Lemma 2.101. □

Proof of Proposition 2.98. The proof consists of the following four steps.

Step 1. Define
Sd: S∗(X)→ S∗(X) by Sd(σ) = σ#

(
Sd(∆k)

)
and similarly also T . Then we have

Sd ◦ ∂ = ∂ ◦ Sd and T ∂ + ∂ T = id− Sd.

The proof is a simple exercise.

Step 2. (Lebegue’s lemma) Let V be an arbitrary open covering of a compact metric space
Y . There is a number ε = ε(V) with the following property: Each subset Z ⊂ Y such that
diamZ ≤ ε is contained in some Vi ∈ V .

Indeed, by the compactness of Y we obtain that there is an open finite covering of Y by
balls Bri(yi) such that each ball B2ri(yi) is contained in some Vj ∈ V . Let ε be smaller than the
minimum of all ri.

Furthermore, for any two points z1, z2 ∈ Y such that dY (z1, z2) ≤ ε we have

∃Bri(yi) ∋ z1 =⇒ dY (z2, yi) ≤ dY (z2, z1) + dY (z1, yi) ≤ ε+ ri ≤ 2ri.

This shows that z2 ∈ B2ri(yi) ⊂ Vj .
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Step 3. The following holds:
(i) Sdm is chain homotopic to the identity homomorphism for all m ∈ N;

(ii) For all σ : ∆k → X there exists some m ∈ N such that Sdm(σ) ∈ CU
k (X).

Define

Dm :=
m−1∑
i=0

T ◦ Sdi.

The first claim follows from the following computation:

∂ Dm +Dm ∂ =
m−1∑
i=0

(∂ T Sdi + T Sdi∂) =
m−1∑
i=0

(∂ T Sdi + T ∂ Sdi)

=
m−1∑
i=0

(id− Sd)Sdi = id− Sdm.

The second claim follows from a combination of Step 2 and Proposition 2.104.

Step 4. For each σ : ∆k → X let m = m(σ) ∈ N be the minimal integer such that (ii) from
Step 3 above holds. Define

D : Sk(X)→ Sk+1(X), Dσ = Dm(σ)σ.

Then there exists a chain homomorphism ρ : S∗(X)→ SU
∗ (X) such that

D∂ + ∂D = id− ı ρ and ρ ı = id, (2.107)

where ı : SU
∗ (X)→ S∗(X) is the inclusion.

Define ρ by the equality

∂Dσ +D∂σ = σ − ρ(σ) ⇐⇒ ρ(σ) = σ − ∂Dσ −D∂σ.

Using the equality ∂Dm(σ)σ +Dm(σ)(∂σ) = σ − Sdm(σ)σ, we obtain

ρ(σ) = Sdm(σ)σ +Dm(σ)(∂σ)−D(∂σ).

From the inequality m(σ) ≥ m(∂jσ), which is valid for all j ∈ {0, . . . , k}, we obtain

Dm(σ)(∂σ)−D(∂σ) =
k∑
j=0

(−1)j
(
Dm(σ)(∂jσ)−D(∂jσ)

)
=

k∑
j=0

(−1)j
∑

i≥m(∂jσ)

T Sdi(∂jσ) ∈ CU
k (X).

This yields that ρ(σ) lies in CU
k (X) too, since Sdm(σ)σ ∈ CU

k (X).
Besides, ρ is a chain homomorphism:

∂ ρ σ = ∂σ − ∂ ∂ D σ − ∂ D ∂ σ = ρ(∂σ).

The fact that ρ takes values in CU
∗ (X), yields that the first equation of (2.107) holds. One

obtains the second equation by observing that for all σ ∈ CU
∗ (X) we have m(σ) = 0 =⇒

Dσ = 0 =⇒ ρ(σ) = σ. This finishes the proof of Step 4 and simultaneously also the proof of
this proposition, since (2.107) implies that ı∗ : HU

∗ (X)→ H∗(X) is an isomorphism. □
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With this understood, we can give the proof of the excision theorem.

Proof of Theorem 2.40. The proof consists of the following two steps.

Step 1. For any subsets A,B ⊂ X such that X = IntA ∪ IntB the inclusion (B,A ∩ B) →
(X,A) induces an isomorphism

H∗(B,A ∩B)→ H∗(X,A).

Set U = {A,B}. All maps, which appear in (2.107), preserve S∗(A). This yields that the
inclusion

ı : SU
∗ (X)/S∗(A)→ S∗(X)/S∗(A)

induces an isomorphism on the homology groups, since for the induced mapsD and ρRelations (2.107)
are also satisfied.

Furthermore, we have

SU
∗ (X)/S∗(A) =

(
S∗(A) + S∗(B)

)
/S∗(A) ∼= S∗(B)/S∗(A ∩B).

Moreover, this isomorphism is induced by the inclusion S∗(B)/S∗(A ∩B)→ SU
∗ (X)/S∗(A).

Step 2. The claim of Step 1 is equivalent to the claim of the excision theorem.

Setting
B := X \ Z and Z := X \B,

we have A ∩ B = A \ Z. Moreover, the condition Z̄ ⊂ Int(A) is equivalent to X = Int(A) ∪
Int(B). □

Proposition 2.98 also allows us to prove the exactness of the Mayer–Vietoris sequence as
follows.

Proof of Theorem 2.89. Set U = {A,B}. It is easy to check that the sequence of chain
complexes

0→ S∗(A ∩B)
φ−→ S∗(A)⊕ S∗(B)

ψ−→ SU
∗ (X) = S∗(A) + S∗(B)→ 0

is exact, where2 φ(x) = (x, x) and ψ(u, v) = u− v, cf. (2.88). The long exact sequence of the
homology groups combined with Proposition 2.98 yield Mayer–Vietoris sequence (2.90). □

The homomorphism ∆: Hk(X) → Hk−1(A ∩ B), which appears in the Mayer–Vietoris
sequence, can be given explicitly. Namely, let z ∈ Sk(X) be an arbitrary chain. It follows from
the proof that there is a decomposition z = x + y, where x ∈ Sk(A) and y ∈ Sk(B). Besides,
∂x + ∂y = ∂z = 0. Notice however, that neither x nor y must be a chain. Then we have
∆([z]) = [∂x] = −[∂y]. Details are left to the reader.

The above implies in particular that ∆ is natural in the following sense. Let X,A,B and
X ′, A′, B′ be as in Theorem 2.89. Furthermore, let f : X → X ′ be a continuous map such that
f(A) ⊂ A′ and f(B) ⊂ B′. Then the diagram

Hk(A ∩B) −−−→ Hk(A)⊕Hk(B) −−−→ Hk(X)
∆−−−→ Hk−1(A ∩B)

f∗

y f∗

y f∗

y f∗

y
Hk(A

′ ∩B′) −−−→ Hk(A
′)⊕Hk(B

′) −−−→ Hk(X
′)

∆−−−→ Hk−1(A
′ ∩B′)

is commutative.
Sometimes the following relative version of the Mayer–Vietoris sequence is also useful.

2Here we omitted the natural inclusions in the notations.
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Proposition 2.108. Assume the following holds: X = IntA ∪ IntB, X ⊃ Y = IntC ∪ IntD,
C ⊂ A, and D ⊂ B. Then the sequence

· · · → Hk(A∩B,C∩D)
Φ−→ Hk(A,C)⊕Hk(B,D)

Ψ−→ Hk(X, Y )
∆−→ Hk−1(A∩B,C∩D)→ . . .

is exact.

Proof. Let U = {A,B} and V = {C,D} be coverings of X and Y respectively. Consider the
commutative diagram

0 0 0y y y
0 −−−→ Sk(C ∩D)

φ−−−→ Sk(C)⊕ Sk(D)
ψ−−−→ SV

k (Y ) −−−→ 0y y y
0 −−−→ Sk(A ∩B)

φ−−−→ Sk(A)⊕ Sk(B)
ψ−−−→ SU

k (X) −−−→ 0y y y
0 −−−→ Sk

(
A ∩B, C ∩D

) φ−−−→ Sk(A,C)⊕ Sk(B,D)
ψ−−−→ SU ,V

k (X, Y ) −−−→ 0y y y
0 0 0

Here SU ,V
k (X, Y ) = SU

k (X)/SV
k (Y ) by definition and the homomorphisms φ and ψ in the last

row are induced by φ and ψ in the middle raw.
Furthermore, the first two raws are exact. In particular, we have ψ ◦ φ = 0 in the middle

raw. This equality must still hold in the third raw, that is the third raw is a chain complex. The
corresponding long exact sequence is of the following form

. . . −−−→ Hk(Z1) −−−→ Hk(Z2) −−−→ Hk(Z3) −−−→ Hk−1(Z1) −−−→ . . . ,

where Zj stands for the complex of the jth raw. This yields

. . . −−−→ 0 −−−→ 0 −−−→ Hk(Z3) −−−→ 0 −−−→ . . .

That is the homology groups of Z3 are trivial, so that the third raw is also exact. □

2.A Poincaré conjectures
Conjecture 2.109 (Poincaré). A compact n-manifold that is homotopy equivalent to the n-
sphere is homeomorphic to the n-sphere.

For n = 1 and n = 2 this conjecture follows from the classification theorems of Section 2.11.5.
Stephen Smale proved this conjecture for n ≥ 5 in 1960. Later in 1982 Michael Freedman
proved also the conjecture in the case n = 4. Only in 2002 the case n = 3 was published by
Grigori Perelman.

LetM be a manifold of dimension n. An open subsetU ⊂M together with a homeomorphism
φ between U and an open subset of Rn is called a chart. A set

A = {(Ui, φi) | i ∈ I}

consisting of charts, which cover all of M , is called an atlas.
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Example 2.110. The sphere Sn has an atlas consisting of two charts. This was given in Example 2.91.
An atlas is called smooth, if each coordinates change map

φi ◦ φ
−1
j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

is smooth. The coordinates change maps are maps between open subsets of Rn and smoothness
means that each component is differentiable to any order. A smooth manifold is a topological
manifold3 together with a smooth atlas.

Let (M,A) and (N,B) be two smooth manifolds. A map f : M → N is said to be smooth,
if all coordinate representations of f , that is the maps

ψj ◦ f ◦ φ−1
i : Rn → Rm,

are smooth (these maps are possibly defined on open subsets of Rn only). Here (Vj, ψj) is a
chart on N .

Exercise 2.111.

• Show that Sn has no atlas consisting of a single chart;
• Construct a smooth atlas on T2 and RP2.

Two manifolds M and N are called diffeomorphic, if there exists a bijection f : M → N ,
so that both f and f−1 are smooth. In this case f is called a diffeomorphism.

Theorem 2.112 (Milnor). There exist 7-manifolds, which are homeomorphic but not diffeomorphic
to the 7-sphere.

It was shown later that there are exactly 28 smooth manifolds (up to a diffeomorphism),
which are homeomorphic to the 7-sphere.

Equivalently, one can reformulate the above theorem somewhat more intrinsically using
the notion of a smooth structure. Namely, two smooth atlases A1 and A2 on M are called
equivalent, ifA1∪A2 is also a smooth atlas. A maximal atlas onM is called a smooth structure.
In other words, a smooth structure is an equivalence class of smooth atlases.

Proposition 2.113. Let M be a topological manifold. M admits at least two inequivalent
smooth structures if and only if there exists a smooth manifold N , which is homeomorphic but
not diffeomorphic to M .

Proof. Let A be a smooth atlas on M . Assume there exist a smooth manifold (N,B) and a
homeomorphism f : M → N , which is not a diffeomorphism. Define a new atlas B′ on M by

B′ :=
{
(f−1(Vj), ψj ◦ f) | (Vj, ψj) ∈ B

}
.

The atlases A and B′ are not equivalent, since otherwise f would be a diffeomorphism.
If M admits two inequivalent smooth atlases A and A′, then idM : (M,A) → (M,A′) is a

homeomorphism, which is not a diffeomorphism. □

Remark 2.114. There are examples of (compact) topological manifolds, which do not admit any
smooth structure.

Conjecture 2.115 (“Smooth Poincaré conjecture”). The natural smooth structure on the 4-
sphere is unique.

It is not known up to now whether this conjecture is true or false. At the same time, it is
known that R4 admits infinitely many (even uncountably many) smooth structures. Examples
of smooth 4-manifolds admitting several smooth structures are also known.

3Technically, certain axioms are also required to hold, but this will not be a concern for us.
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Chapter 3

CW complexes and cellular homology

3.1 Attaching topological spaces
Let X be a topological space. The cone of X is the space

CX := X × [0, 1]/ ∼, (x1, 0) ∼ (x2, 0) ∀x1, x2 ∈ X.

Exercise 3.1. Show that the tip of the cone {p} := [X × {0}] is a deformation retract of the
cone. In particular, cones are contractible.

Let X, Y be topological spaces such that X ∩ Y = ∅, A ⊂ X and f : A→ Y a continuous
map. We say that the space

X ∪f Y =
(
X ⊔ Y

)
/ ∼, where a ∼ f(a) ∀a ∈ A

is obtained by attaching X to Y via f .
Some properties considered in the previous chapter can be elegantly expressed in terms of

the above attaching construction. For example, consider the space X ∪CA, where the attaching
map is the inclusion a 7→ (a, 1). We have

H̃∗(X ∪ CA) ∼= H∗(X ∪ CA,CA) by the LES of the pair (X ∪ CA,CA)
∼= H∗

(
X ∪ CA \ {p}, CA \ {p}

)
by excision

∼= H∗(X,A) A ⊂ CA \ {p} is a deform. retract.

This means that the relative homology groups can be represented as the absolute homology
groups of the space X ∪ CA. Here one does not need to impose any assumptions on A, cf.
Theorem 2.97. L 14

Let φγ : Sn−1 → X, γ ∈ Γ, be a family of continuous maps. We say that the space(
X

⊔
γ∈Γ

Bn,γ

)
/ ∼, where y ∼ φγ(y) ∀y ∈ ∂Bn,γ

is obtained from X by attaching of n-cells and Φγ : Bn,γ → X
⊔
Bn,γ/ ∼ is called the

characteristic map. The restriction of Φγ to the interior B̊n,γ of the ball is a homeomorphism
onto its image enγ , which is referred to as an n-cell.

Definition 3.2. A structure of a CW complex on a Hausdorff space X is a sequence of closed
subspaces

X0 ⊂ X1 ⊂ · · · ⊂ Xn ⊂ . . .

such that the following holds:
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(i) X = ∪nXn;

(ii) X0 is a discrete space;

(iii) Xn is obtained from Xn−1 by attaching of n-cells;

(iv) A subset A ⊂ X is closed (open) in X if and only if A ∩Xn is closed (open) in Xn.

The subspace Xn is called the n-skeleton of X .

A CW structure is called finite if it consists of finitely many cells.

Proposition 3.3. Let X be a topological space equipped with a CW structure. The following
holds:

• X ⊃ A is closed (open)⇐⇒ Φ−1
γ (A) ⊂ Bn is closed (open);

• For finite CW structures (iv) of the definition above holds automatically.

Proof. The continuity of Φγ yields immediately the proof of the first statement in one direction.
To show the other direction, assume that A ∩Xn−1 is closed. Then A ∩Xn is closed in Xn by
the definition of the quotient topology.

Assume A ⊂ X is closed. Since each Xn is closed, the set Xn ∩ A is also closed for any
CW complex. Thus, we only need to prove that for a finite CW complex X if A∩Xn is closed
for any n, then A is itself closed. Indeed, if the CW structure is finite, then A = ∪(A ∩ ēnγ) is
compact as a finite union of compact subsets. Since X is a Hausdorff space, A is closed. □

Example 3.4. A finite topological graph is a CW complex.

Example 3.5. Each compact surface admits a CW structure. This follows for example from
Corollary 2.79.

Example 3.6. The sphere Sn = Bn/∂Bn has a CW structure, which consists of one 0-cell and
one n-cell:

X0 = · · · = Xn−1 = {pt}, Xn = Sn = {pt} ∪Bn,

where φ : ∂Bn → {pt} is necessarily the constant map.

Example 3.7. (Non-Example) Consider the space

X :=
⋃
n∈N

Xn

where Xn is the circle in R2 of radius 1/n centered at (0, 1/n). We define the topology on X
as the one inherited from R2. Then X \ {0} consists of infinitely many intervals, however this
is not a CW structure (Why?).

Example 3.8 (Real projective space).

RPn = the space of all lines in Rn+1 through the origin
= Sn/ ∼, where x ∼ −x ∀x ∈ Sn,
= Sn−/ ∼, where x ∼ −x ∀x ∈ ∂Sn−,
= RPn−1 ∪ en.

The attaching map φ : Sn−1 → RPn−1 is the quotient map (in particular, this is a 2-to-1 map).
This yields a finite CW structure on RPn:

Xn = RPn = e0 ∪ e1 ∪ · · · ∪ en.
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Example 3.9 (Complex projective space).

CPn =
{
C-lines ⊂ Cn+1 through 0

}
=

(
Cn+1 \ 0

)
/ ∼ (z0, . . . , zn) ∼ (λz0, . . . , λzn), λ ∈ C \ 0,

= S2n+1/ ∼ (z0, . . . , zn) ∼ (λz0, . . . , λzn), |z| = 1, |λ| = 1,

= B2n/ ∼ z′ ∼ λz′ ∀z′ ∈ ∂B2n, |λ| = 1.

To see the last equality, notice first that for any non-zero z0 ∈ C there exists a unique λ ∈ C
with |λ| = 1 and λz0 ∈ R>0. Hence, for any (z0, z1, . . . , zn) ∈ S2n+1 with z0 ̸= 0 there exists a
unique λ ∈ C such that |λ| = 1 and r := λz0 ∈ R>0. Hence,{

(z0, z1, . . . , zn) ∈ S2n+1 | z0 ̸= 0
}
/ ∼ ∼=

{
(r, z1, . . . , zn) | |z|2 = 1− r2, r ∈ (0, 1]

}
∼= B2n \ ∂B2n.

This yields in turn CPn = e2n ∪
(
∂B2n/ ∼

)
= e2n ∪ CPn−1. Moreover, the attaching map is

the projection S2n−1 → CPn−1 (the Hopf map). This yields a CW structure on CPn:

CPn = e0 ∪ e2 ∪ · · · ∪ e2n.

Example 3.10 (Quaternion-projective space). Replacing R or C by quaterions in the constructions
above, we obtain the quaternion-projective space:

HPn =
(
Hn+1 \ 0

)
/(H \ 0) = e0 ∪ e4 ∪ · · · ∪ e4n.

L 15

Proposition 3.11. We have

Hk(CPn) ∼=

{
Z k = 0, 2, . . . , 2n,

0 else
and Hk(HPn) ∼=

{
Z k = 0, 4, . . . , 4n,

0 else.
(3.12)

Proof. By the induction on n we show that Hk(CPn) are indeed given by (3.12). The proof for
HPn can be obtained along similar lines.

For n = 0 we have CP0 = {pt} and therefore (3.12) holds in this case.
The long exact sequence of the pair (CPn,CPn−1) yields

· · · → Hk+1(CPn,CPn−1)→ Hk(CPn−1)→ Hk(CPn)→ Hk(CPn,CPn−1)→ . . . (3.13)

We also have CPn/CPn−1 = e2n/∂e2n = S2n.

Exercise 3.14. Show that CPn−1 is a deformation retract of a neighborhood in CPn. (Hint:
Show that CPn \

{
[0 : . . . : 0 : 1]

}
is the total space of a vector bundle, that is there is a

continuous map π : CPn \
{
[0 : . . . : 0 : 1]

}
→ CPn−1 such that each fiber of π is homeomorhic

to a complex vector space of dimension one.)

For k < 2n (3.13) yields Hk(CPn) ∼= Hk(CPn−1). For k = 2n we obtain

0 = H2n(CPn−1)→ H2n(CPn)→ H2n(S
2n)→ H2n−1(CPn−1) = 0,

that is H2n(CPn) ∼= Z. □

Draft 46 December 14, 2023



Algebraic topology

3.2 Operations on CW complexes

Product. If X = ∪ enγ and Y = ∪ emβ are CW complexes, then

X × Y =
⋃

k=m+n

⋃
γ,β

enγ × emβ .

This yields a CW structure on X × Y , since Bn ×Bm is homeomorphic to Bn+m (Why?).

Example 3.15. S1 = e0∪e1 =⇒ T2 = S1×S1 = e0∪ (e11∪e12)∪e2 = {pt}∪ (A∪B)∪disc,
cf. Section 2.11.1.

Quotient. A subcomplex A of a CW complex X is a closed subset, which is a union of cells
in X . Under these circumstances (X,A) is called a CW pair.

The CW complex X/A consists of cells of X \ A and an additional 0-cell [A]. For an n
cell with an attaching map φγ : Sn−1 → Xn−1 the corresponding attaching map is given by the
composition Sn−1 → Xn−1 → Xn−1/(Xn−1 ∩ A).

Example 3.16. Consider the torus T2 = e0∪(e11∪e12)∪e2 and setA = e0∪(e11∪e12) = S1∨S1.
Then we have T2/A = e0 ∪ e2 = S2.

Suspension. The space

SX :=
(
X × I/X × {0}

)
/X × {1} = C1X ∪X C2X

is called the suspension of X . In particular, when X is a CW complex the suspension SX is
also a CW complex.

For example, we have S(Sn) ∼= Sn+1.

Smash product. Let (X, x0) and (Y, y0) be pointed topological spaces. The wedge product
X ∨ Y can be identified with the subspace

X × {y0} ∪ {x0} × Y ⊂ X × Y.

The space
X ∧ Y := X × Y/X ∨ Y = X × Y/

(
X × {y0} ∪ {x0} × Y

)
is called the smash product of (X, x0) and (Y, y0). If X and Y are CW complexes such that x0
and y0 are 0 cells of X and Y respectively, then X ∧ Y is a (pointed) CW complex.

Example 3.17. Consider the spheres as CW complexes as follows: Sn = e0 ∪ en and Sm =
e0 ∪ em. Then

Sm × Sn = e0 ∪ em ∪ en ∪ em+n ⊃ e0 ∪ em ∪ en = Sm ∨ Sn.

This yields Sm ∧ Sn = e0 ∪ em+n = Sm+n.
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Reduced suspension. Let (X, x0) be a pointed topological space. The space

ΣX = X × I/
(
X × {0} ∪X × {1} ∪ {x0} × I

)
= X ∧ S1

is called the reduced suspension of X . For example, ΣSn ∼= Sn+1.
The following observation will be useful in the sequel. First notice that the (non-reduced)

suspension of the n-ball is clearly homeomorphic to the (n+ 1)-ball. By collapsing an interval
on the boundary, we obtain a topological space, which is still homeomorphic to the (n+1)-ball,
that is ΣBn

∼= Bn+1. This yields in turn the following: If X is a CW complex, then ΣX is a
CW complex too and each n-cell in X corresponds to an (n+ 1)-cell in ΣX:

X =
⋃
n≥0

⋃
γ

enγ =⇒ ΣX =
⋃
n≥0

⋃
γ

en+1
γ . (3.18)

3.3 Homotopy extension property

Let X be a topological space and A ⊂ X . Recall that a continuous map r : X → A is called
a retraction if r|A = r ◦ ıA = idA. Also, A is called the deformation retract of X if idX is
homotopic to a retraction r : X → A, cf. Definition 2.57.

Definition 3.19. We say that the pair (X,A) has the homotopy extension property (HEP for
short), if the following holds: If a continuous map f : X → Y and a homotopy h : A× I → Y
of f |A = f ◦ ıA are given, then there is a homotopy H : X× I → Y such that H ◦ (ıA× id) = h.

Lemma 3.20. A pair (X,A) has the HEP if and only if X × {0} ∪ A × I ⊂ X × I admits a
retraction.

Proof. The following observation is useful for the proof: The data consisting of a continuous
map f : X → Y together with a homotopy of f ◦ ıA is equivalent to a continuous map X ×
{0} ∪ A× I → Y .

If there exists a retraction r : X × I → X × {0} ∪ A × I , then H := h ◦ (r × id) is an
extension of h.

If (X,A) has the HEP, then for id : X × {0} ∪ A × I → X × {0} ∪ A × I there exists an
extension r : X × I → X × {0} ∪ A× I , which is the required extension. □

Let X be a CW complex and Y a topological space. For the proof of the next proposition
we need the following observation: A continuous map f : X → Y is the same as the sequence
fn : X

n → Y of continuous maps such that fn|Xk = fk provided k ≤ n. Indeed, given
a continuous map f : X → Y , the corresponding sequence is constructed simply by setting
fn = f |Xn . If a sequence fn is given, we can define a map f : X → Y by

f(x) = fn(x) provided x ∈ Xn.

This map is continuous, since for each open subset U ⊂ Y the subset f−1(U) ∩Xn = f−1
n (U)

is open and therefore also the subset f−1(U) is open in X .

Proposition 3.21. If (X,A) is a CW pair, then X × {0} ∪ A × I ⊂ X × I is a deformation
retract. In particular, each CW pair has the HEP.
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The proof of this proposition is given after the proof of Lemma 3.22.

Consider [0,∞) = ∪i∈N[i− 1, i] as a CW complex. The CW subcomplex

T =
⋃
i

X i × [i,∞) ⊂ X × [0,∞)

is called the telescope of X .

Lemma 3.22. T is homotopy equivalent to X .

Proof. Since X is a deformation retract of X × [0,∞), it is enough to show that T is also a
deformation retract of X × [0,∞).

Set Yi := T ∪
(
X × [i,∞)

)
. By Proposition 3.21, X i × [i, i + 1] ∪ X × {i + 1} is a

deformation retract of X × [i, i+1]. This yields that Yi+1 is a deformation retract of Yi. Denote
by hi,t a homotopy between id and the retraction Yi → Yi+1.

Define ft : X × [0,∞)→ T by

ft(x, τ) =



h0,2t(x, τ) t ∈ [0, 1
2
],

h1,4t−2 ◦ r0(x, τ) t ∈ [1
2
, 3
4
],

. . .

hi,ρi(t) ◦ ri−1 ◦ · · · ◦ r0(x, τ) t ∈ [1− 2−i, 1− 2−i−1],

. . . . . .

where ρi : [1− 1
2i
, 1− 1

2i+1 ]→ [0, 1] is a homeomorphism, for example ρi(t) = 2i+1t−2i+1−2.
Then ft is a map X × [0,∞)→ T such that ft|Xi×[0,∞) = id for t ≥ 1− 1

2i+1 . Moreover, ft is
continuous, since ft is continuous on each X i × [i, i+ 1]. This yields the claim. □

Proof of Proposition 3.21. Notice that there exists a retraction r : Bn×I → Bn×{0}∪∂Bn×I .
This can be obtained for example as the projection from the point (0, 2) ∈ Bn × R.

This yields a retraction rn : Xn× I → Xn×{0}∪ (Xn−1∪An)× I , where An := Xn∩A.
Indeed, Xn × I is obtained from Xn × {0} ∪ (Xn−1 ∪ An) × I by attaching of Bn × I along
Bn × {0} ∪ ∂Bn × I .

Let hn,t be a homotopy between rn and idXn×I . Just like in the proof of Lemma 3.22, the
composition of {hn,t} yields the required retraction. □

L 16

3.4 Cellular homology
Consider the sequence

· · · → Hn+1(X
n+1, Xn)

dn+1−−−→ Hn(X
n, Xn−1)

dn−−→ Hn−1(X
n−1, Xn−2)→ . . . , (3.23)

where the homomorphisms dn+1 are defined as the composition

Hn+1(X
n+1, Xn)

δn+1−−−→ Hn(X
n)

jn−−→ Hn(X
n, Xn−1)

(these maps are part of the long exact sequence of the pair (Xn+1, Xn) and (Xn, Xn−1)). This
yields

dn ◦ dn+1 = jn−1 ◦ (δn ◦ jn) ◦ δn+1 = 0,
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since δn ◦ jn = 0 as the composition of two homomorphisms in the long exact sequence of the
pair (Xn, Xn−1). Hence, (3.23) is a chain complex. The homology groups of (3.23) are called
the cellular homology groups of X .

Theorem 3.24. The cellular homology groups are isomorphic to the singular homology groups.

The proof of the above theorem requires certain auxiliary statements, which are proved first.

Definition 3.25. If X = Xn for some n, then X is called finite dimensional. A minimal n such
that X = Xn is called the dimension of X .

Lemma 3.26. Let (Xα, xα) be a family of pointed spaces such that each xα is a deformation
retract of a neighborhood in Xα. Then the following holds

H̃∗

(∨
α

Xα

)
∼=

⊕
α

H̃∗(Xα),

where the isomorphism is induced by the inclusions ıα : Xα →
∨
Xa.

Proof. This follows from Theorem 2.97:⊕
α

H̃∗(Xα) ∼=
⊕
α

H∗(Xα, {xα}) ∼= H∗
(
⊔Xα,⊔{xα}

)
∼= H̃∗

(
⊔Xα/ ⊔ {xα}

)
= H̃∗

(∨
α

Xα

)
.

□

Lemma 3.27. For any CW complex X the following holds:

(a) Hk(X
n, Xn−1) is a free abelian group generated by the n cells of X for k = n and trivial

for k > 0, k ̸= n;

(b) Hk(X
n) = 0 for k > n.

Proof. Claim (a) follows from the following observations: Xn−1 ⊂ Xn is a deformation retract
of a neighborhood and Xn/Xn−1 is the wedge product of n-spheres.

Claim (b) is left as an exercise. □

Proof of Theorem 3.24. The proof consists of four steps.

Step 1. For any finite dimensional CW complex X such that Xn = {pt} for some n ∈ N we
have H̃k(X) = 0 for all k ≤ n.

Consider the sequence of homomorphisms

Hk(X
k)→ Hk(X

k+1)→ Hk(X
k+2)→ . . . ,

which are induced by the inclusions. The long exact sequence of the pair (Xk+m+1, Xk+m)
yields that any homomorphism appearing in this sequence is surjective. This implies the claim
of this step.

Step 2. For any CW complex X such that Xn = {pt} for some n ∈ N we have H̃k(X) = 0 for
all k ≤ n.
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SetR := X0× [0,∞) ⊂ T , where T is the telescope ofX . Denote also Z := R∪iX i×{i}.
Then Z/R is homeomorphic to

∨
iX

i. Using the previous step, we obtain H̃k(Z/R) = 0 for all
k ≤ n. The long exact sequence of the pair (Z,R) yields H̃k(Z) = 0 for all k ≤ n.

Furthermore, we have

T/Z =
(
T/ ⊔X i × {i}

)
/R =

(
∪iSX i

)
/R =

∨
i

ΣX i.

Moreover, the (n + 1) skeleton of ΣX i is a point, cf. (3.18). This yields H̃k(T/Z) = 0 for
k ≤ n + 1. From the long exact sequence of the pair (T, Z) we obtain H̃k(T ) = 0 for k ≤ n.
The claim of this step now follows from Lemma 3.22.

Step 3. The map Hk(X
n)→ Hk(X) induced by the inclusion is an isomorphism for k < n and

an epimorphism for k = n.

This follows immediately from Step 2 by using the long exact sequence of the pair (X,Xn).

Step 4. We prove this theorem.

By the long exact sequence of the pair (Xn−1, Xn−2) we have

0 = Hn−1(X
n−2)→ Hn−1(X

n−1)
jn−1−−−→ Hn−1(X

n−1, Xn−2).

Since jn−1 is injective, we obtain ker dn = ker(jn−1 ◦ δn) = ker δn = im jn ∼= Hn(X
n).

Since jn is injective, we have jn(im δn+1) = im(jn ◦ δn+1) = im dn+1. This yields that jn
induces an isomorphism Hn(X

n)/ im δn+1
∼= ker dn/ im dn+1.

Furthermore, by the long exact sequence of the pair (Xn+1, Xn) we obtain

Hn+1(X
n+1, Xn)

δn+1−−−→ Hn(X
n) −→ Hn(X

n+1)→ 0.

In particular, we have Hn(X
n)/ im δn+1

∼= Hn(X
n+1). The claim of this theorem follows now

from the observation that Hn(X
n+1) ∼= Hn(X) by Step 3. □

L 17

Corollary 3.28. Let k be the number of the n cells of some CW structure of X . Then Hn(X)
has at most k generators. In particular, if there are no n cells, then Hn(X) = 0. □

Theorem 3.29. Consider enγ es a generator of Hn(X
n, Xn−1). The homomorphism dn in (3.23)

is given by
dn(e

n
γ) =

∑
µ

dγµe
n−1
µ , (3.30)

dγµ is the degree of the map

Sn−1 = ∂enγ → Xn−1 → Xn−1/
(
Xn−1 \ en−1

µ

)
= Sn−1.

Moreover, the sum in (3.30) is finite.

Proof. Consider the following commutative diagram

Hn(Bn,γ, ∂Bn,γ) H̃n−1(∂Bn,γ) H̃n−1(S
n−1
µ )

Hn(X
n, Xn−1) H̃n−1(X

n−1) H̃n−1(X
n−1/Xn−2)

Hn−1(X
n−1, Xn−2) Hn−1(X

n−1/Xn−2, Xn−2/Xn−2),

δ
∼=

Φγ∗ φγ∗

∆∗

δ

dn

q∗

jn−1

qµ∗

∼=

∼=
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where the following notations are used:
• Φγ is the characteristic map of eγ;
• φγ : ∂Bn,γ → Xn−1 is the attaching map of eγ;
• q : Xn−1 → Xn−1/Xn−2 is the projection;
• qµ : Xn−1/Xn−2 → Xn−1/

(
Xn−1 \ en−1

µ

) ∼= Sn−1 is the projection;
• ∆ := qµ ◦ q ◦ φγ .
The generator eγ ∈ Hn(X

n, Xn−1) is Φγ∗◦δ
−1(a), where a is the generator of H̃n−1(∂Bn,γ).

The commutativity of the diagram yields the equality

dµγa = qµ∗(dn(eγ)) = ∆∗a = (deg∆)a.

Here the first equality follows from the following observation: qµ∗ maps en−1
µ to a and vanishes

on all other generators. This yields (3.30).
It remains to prove that (3.30) is a finite sum. This will clearly follow if we can show that

any compact set in X intersects non-trivially only a finite number of cells. To this end, assume
there is a compact set K ⊂ X intersecting infinitely many cells. Then there is an infinite set
K ′ = {x1, x2, . . . } ⊂ K such that no two points in K ′ lie in the same cell.

I claim that K ′ is closed. Indeed, this claim can be proved by induction. Thus, let us assume
thatK ′∩Xn−1 is closed. If eγ is an n-cell, then we have ēnγ ∩K ′ = ∂ēnγ ∩K ′∪enγ ∩K ′. The first
of those sets is closed by assumption, the second one contains at most one point and therefore
is closed too. Notice that K ′ is therefore compact as a closed subset of a compact set.

A similar argument yields in fact that any subset of K ′ is in fact closed. But this implies that
K ′ is discrete and therefore must be finite. This contradiction finishes the proof of finiteness
of (3.30). □

Example 3.31. (Homology groups of real projective spaces) We begin with some observations.
A map f : Sn ∨ Sn → Sn can be understood as a pair (f1, f2) of maps Sn → Sn. Then for
the induced map we have f∗(x, y) = f1∗x + f2∗y (this follows from the fact that the projection
Sn ⊔ Sn → Sn ∨ Sn induces an isomorphism on H̃∗).

Another observation is as follows. Let F : Sn → Sn ∨ Sn be a map with the property: F
maps Sn+ on one copy of Sn and Sn− on the other one (the image of the equator must be the point
in Sn ∨ Sn). Then we have F∗a = (f+∗a, f−∗a), where f± : Sn±/∂S

n
± → Sn is defined as the

restriction of F .
Furthermore, let us proceed to the computation of the homology groups of RPn. We know

from Example 3.8 that
RPn = RPn−1 ∪ en,

where the attaching map φ is the projection Sn−1 → RPn−1. Consider the commutative diagram

Sn−1 φ−−−→ RPn−1y y
Sn−1/Sn−2 −−−→ RPn−1/RPn−2

∼=
y y∼=

Sn−1 ∨ Sn−1 ψ−−−→ Sn−1.

Here the components (ψ1, ψ2) of ψ satisfy the relation ψ2 = ψ1 ◦ A, where A is the antipodal
map. By the construction of cells in RPn, we can assume that ψ1 is the identity map.
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The map ∆: Sn−1 → Sn−1 (the diagonal in the above diagram) induces ∆∗. We have

∆∗a = a+ A∗a =
(
1 + (−1)n

)
a, a ∈ Hn−1(S

n−1)

that is deg∆ = 1 + (−1)n.
This yields that (3.23) for RPn has the following form:

0→ Z 2×−−→ Z 0−→ Z 2×−−→ · · · → Z 0−→ Z→ 0 if n is even,

0→ Z 0×−−→ Z 2−→ Z 0×−−→ · · · → Z 0−→ Z→ 0 if n is odd.

This implies in turn that the homology groups of RPn are given by

Hk(RPn) ∼=


Z for k = 0 and k = n provided n is odd;
Z/2Z for k odd, k < n;

0 else.

3.5 The degree of a map revisited
Theorem 3.29 reduces the problem of computing cellular complexes to that of computing
degrees of maps between spheres. This is already an enormous simplification, however it turns
out that the latter problem can be completely solved in elementary terms. The aim of this section
is to sketch a receipy for computations of degrees.

The following theorem, which we take as granted, shows that the task may be reduced to
the computation of degrees of smooth maps.

Theorem 3.32 ([BT82, Prop. 17.8]). Each homotopy class of continuous maps Sn → Sn

contains a smooth representative. □

Thus assume that g : Sn → Sn is a smooth (or C1) map. Pick a point y ∈ Sn distinct from
the north pole and assume that g−1(y) does not contain the north pole (the north pole is not
really a distinguished point on the sphere, this choice is for the convenience of exposition only).
By using the stereographic projection, we can think of g as a smooth map from Rn into itself.
We say that y is a regular value of g if for any p ∈ g−1(y) we have detDpg ̸= 0, where Dpg
is the differential of g (the Jacobi matrix) at p. We shall show below that the preimage of a
regular value consists of finitely many points, say f−1(y) = {p1, . . . , pk}. To each point pj we
can associate a sign as follows:

ε(pj) := sign detDpjg.

With these preliminaries at hand we can state the main theorem of this section.

Theorem 3.33. If y is a regular value of a smooth map g : Sn → Sn, then we have

deg g =
∑

p∈f−1(y)

ε(p) =
k∑
j=1

ε(pj).

Sketch of proof. It is useful to recall first that a smooth map f : Bn → Bn is called a diffeo-
morphism if it is bijective and f−1 is also smooth. In this case, detDf vanishes nowhere and,
hence, must be either positive or negative everywhere. We say that f is orientation-preserving
if detDf > 0 and orientation-reversing if detDf < 0.
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Step 1. Let f : Bn → Bn be a diffeomorphism such that f(∂Bn) ⊂ ∂Bn. Define a continuous
map F : Sn → Sn by the diagram

Bn f−−−→ Bn

π

y yπ
Sn = Bn/∂Bn F−−−→ Sn = Bn/∂Bn,

where π is the quotient map. Then

degF =

{
+1 if f is orientation-preserving,
−1 if f is orientation-reversing.

Without loss of generality we can assume that f(0) = 0. If (r, ω) are polar coordinates on
Rn (so that ω ∈ Sn−1), we extend f to a map Rn → Rn by setting f(r, ω) =

(
r, f(ω)

)
for

r ≥ 1. Consider the map

h(x, t) =

{
t−1f(tx) if t ∈ (0, 1],

D0f(x) if t = 0.

Using the fact that f(x) = 0+D0f(x)+O
(
|x|2

)
, it is easy to check that h is continous at t = 0,

hence a homotopy between f and D0f .

Exercise 3.34. Let L : Rn → Rn be a linear map. Extend L to a map L̂ : Sn → Sn, where
Sn = Rn ∪ {∞} and L̂(∞) =∞. Show that deg L̂ = sign detL.

To finish the proof of this step it remains to notice that

degF = deg f̂ = deg D̂0f = sign detD0f = ±1,

where f̂ : Sn → Sn is the extension of f .

Step 2. We prove this theorem.

Let y be a regular value of f . If p ∈ f−1(y), then there exists a neighbourhood Up of p and
a neighbourhood V = Vp of y such that f : Up → Vp is a diffeomorphism. In particular, f−1(y)
is discrete.

Furthermore, f−1(y) is closed as the preimage of a closed subset, hence also compact as a
closed subset of a compact space. It follows that f−1(y) is in fact finite, because any compact
discrete set must be finite.

Denote f−1(y) = {p1, . . . , pk}, V = Vp1 ∩ · · · ∩ Vpk , and Uj := Upj ∩ f−1(V ) so that
f : Uj → V is a diffeomorphism for each j. We can also assume that V is homeomorphic to Bn

(and, hence, Uj ∼= Bn) and f(∂Uj) ⊂ ∂V .
Furthrmore, by collapsing Sn \ ⊔jUj and Sn \ V to points, we obtain the diagram

Sn
f−−−−→ Sn

π

y yϖ∨
j S

n g=(g1,...,gk)−−−−−−−−→ Sn ∼= Sn/
(
Sn \ V

)
.

Here we think of a map
∨
j S

n → Sn simply as a k-tuple of maps Sn → Sn and each component
gj can be obtained from f by collapsing the complement of Uj to a point.
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It should be clear that π∗ : Hn(S
n)→ Hn(

∨
j S

n
j ) sends a generator a to a1+ · · ·+ak, where

aj is a generator of Hn(S
n
j ). Notice also that ϖ∗ : Hn(S

n) → Hn(Sn) is the identity map. It
follows that deg f = deg g1 + · · · + deg gn. By applying the previous step, we finish the proof
of this theorem. □

The following theorem shows that for any smooth map almost any value is in fact regular.
In particular, the set of regular values is non-empty and it is always possible to compute the
degree of a smooth map by counting points with appropriate signs.

Theorem 3.35 (Sard). For any smooth map the complement of the set of regular values is of
measure zero. □

An interested reader may find a proof of Sard’s theorem in [BT03, 9.4] or [Mil65, §3].

3.6 The Euler characteristics
For any topological space X we set

bk(X) := rkHk(X) ∈ Z≥0 ∪ {∞}.

This is called the kth Betti number of X .
Assume that all Betti numbers of X are finite and only finitely many are non-zero. Under

these circumstances the integer

χ(X) :=
∑
k

(−1)kbk(X)

is called the Euler characteristic of X . For example, by Corollary 3.28 the Euler characteristic
of a finite CW complex is well defined.

Theorem 3.36. For a finite CW complex X we have

χ(X) =
∑
n

(−1)ncn,

where cn is the number of n-cells of X .

Proof. First notice that by Step 2 in the proof of Theorem 2.56 we obtain the following fact:
If 0 → A → B → C → 0 is an exact sequence of finitely generated abelian groups, then
rkB = rkA+ rkC.

Let
0→ Cn

dn−−→ Cn−1 → · · · → C1 → C0 → 0

be Complex (3.23) for X . Denote

Zk := ker dk, Bk := im dk+1, and Hk := Zk/Bk.

We have

0→ Bk → Zk → Hk → 0 is exact =⇒ rkZk = rkBk + rkHk;

0→ Zk → Ck → Bk−1 → 0 is exact =⇒ rkCk = rkZk + rkBk−1.

Hence, we obtain: rkCk = rkBk + rkBk−1 + rkHk =⇒
∑

(−1)k rkCk =
∑

(−1)k rkHk.
□
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This theorem generalizes Theorem 2.56 for arbitrary dimensions.

Remark 3.37 (Another proof of Theorem 2.67). A planar graph yields a CW structure on S2 =
R2 ∪ {∞}. By Theorem 3.36 we have

#vertices−#edges +#faces = χ(S2) = 2.
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Chapter 4

The fundamental group

4.1 Basic constructions
The following terminology will be useful in the sequel.

Definition 4.1. For A ⊂ X we say that two continuous maps of pairs f0, f1 : (X,A)→ (Y,B)
are homotopic relative toA, if there exists a continuous map of pairs h : (X×I, A×I)→ (Y,B)
such that

h
∣∣
X×{0} = f0 and h

∣∣
X×{1} = f1.

To elaborate, the above definition means that h is a homotopy between f0 and f1 such that

h(a, t) ∈ B for all a ∈ A and all t ∈ I.

In this case we write
f0 ≃ f1 rel A.

In the particular case A = {x0}, B = {y0} we write simply f0 ≃ f1 rel x0. This means, that
there is a homotopy h between f0 and f1, such that h(x0, t) = y0 for all t ∈ I .

Let X be a topological space. For two continuous paths u, v : I → X such that u(1) = v(0)
define the concatenation (product) by the formula

u ∗ v (t) :=

{
u(2t) for t ∈ [0, 1

2
],

v(2t− 1) for t ∈ [1
2
, 1].

Pick any basepoint x0 and denote

Ω(X, x0) :=
{
u : I → X is continuous | u(0) = x0 = u(1)

}
.

Elements of Ω(X, x0) are called loops in X based at x0. Two loops u0 and u1 are said to be
equivalent (u0 ∼ u1), if u0 and u1 are homotopic relative to the basepoint. Define

π1(X, x0) := Ω(X, x0)/ ∼ .

The above concatenation operation yields a well-defined map ∗ : Ω(X, x0) × Ω(X, x0) →
Ω(X, x0). Since

u0 ∼ u1 and v0 ∼ v1 =⇒ u0 ∗ v0 ∼ u1 ∗ v1,

we obtain a well-defined map

π1(X, x0)× π1(X, x0)→ π1(X, x0), [u] · [v] = [u ∗ v]. (4.2)
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Theorem 4.3. π1(X, x0) is a group with respect to the product given by (4.2).

Proof. The proof consists of the following steps.

Step 1. The constant loop c(t) = x0 is the identity element in π1(X, x0), that is for any u ∈
Ω(X, x0) we have u ∗ c ∼ u and c ∗ u ∼ u.

A homotopy between u ∗ c and u can be constructed explicitly, namely

h(t, s) =

{
u
(
2t/(1 + s)

)
if t ∈

[
0, 1+s

2

]
,

x0 if t ∈
[
1+s
2
, 1

]
.

A homotopy between c ∗ u and u can be given by a similar formula.

Step 2. For u ∈ Ω(X, x0) define ū ∈ Ω(X, x0) by ū(t) = u(1 − t). The map u 7→ ū yields a
well-defined map π1(X, x0)→ π1(X, x0) such that [u] · [ū] = [c] = [ū] · [u].

We have to show that u ∗ ū is homotopic to c. The required homotopy is given again by the
following explicit formula:

h(t, s) =

{
u
(
2t(1− s)

)
if t ∈

[
0, 1

2

]
,

u
(
(2− 2t)(1− s)

)
if t ∈

[
1
2
, 1

]
.

Step 3. For any u, v, w ∈ Ω(X, x0) we have (u∗v)∗w ∼ u∗ (v ∗w). In particular, the product
on π1(X, x0) is associative.

Again, one can construct the explicit homotopy as follows:

h(t, s) :=


u
(

4t
1+s

)
if t ∈

[
0, 1+s

4

]
,

v(4t− 1− s) if t ∈
[
1+s
4
, 2+s

4

]
,

w
(
1− 4−4t

2−s

)
if t ∈

[
2+s
4
, 1

]
.

Finally, a combination of Steps 1–3 yields that π1(X, x0) is a group. Indeed, the last step
yields associativity, the first one existence of the identity element, and the second one the
existence of the inverse. □

It is worthwhile to note, that the proof of the above theorem yields an explicit expression
for the inverse element of [u] ∈ π1(X, x0), namely

[u]−1 = [ū].

Definition 4.4. The group π1(X, x0) is called the fundamental group of X (relative to the
basepoint x0).

Example 4.5. If X is contractible, then any loop is homotopic to the constant one. In other
words, π1(X, x0) = {1} for any basepoint x0. For example, π1(Rn, x0) = {1}.

It is natural to ask whether the fundamental group depends on the basepoint. An answer to
this question is given by the following result.

Proposition 4.6. If X is path connected, then π1(X, x0) and π1(X, x1) are isomorphic for any
x0, x1 ∈ X .
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Proof. Pick a curve w connecting x0 and x1. Define the map

Pw : π1(X, x0)→ π1(X, x1) Pw([u]) = [w̄ ∗ u ∗ w].

By the proof of Theorem 4.3 we have

Pw
(
[u][v]

)
= [w̄ ∗ u ∗ v ∗ w] = [w̄ ∗ u ∗ (w ∗ w̄) ∗ v ∗ w] =

[
(w̄ ∗ u ∗ w) ∗ (w̄ ∗ v ∗ w)

]
= Pw([u]) · Pw([v]).

Hence, Pw is a group homomorphism.
Denoting by Pw̄ the corresponding homomorphism π1(X, x1)→ π1(X, x0), we obtain

Pw̄ ◦ Pw([u]) =
[
w ∗ (w̄ ∗ u ∗ w) ∗ w̄

]
=

[
(w ∗ w̄) ∗ u ∗ (w ∗ w̄)

]
= [u].

Hence, Pw̄ ◦ Pw = id. A similar argument shows that Pw ◦ Pw̄ = id. In other words, Pw is an
isomorphism whose inverse is Pw̄. □

Thus, ifX is path connected, the isomorphism class of the fundamental group is independent
of the basepoint. Somewhat loosely speaking, in this case one usually drops the basepoint from
the notation of the fundamental group and calls this “the fundamental group of X”.

Proposition 4.7. Any continuous map f : (X, x0)→ (Y, y0) induces the group homomorphism

f∗ : π1(X, x0)→ π1(Y, y0), f∗[u] = [f ◦ u ]

with the following properties:

(i) id∗ = id;

(ii) (g ◦ f)∗ = g∗ ◦ f∗;

(iii) f ≃ g rel x0 =⇒ f∗ = g∗;

(iv) (X, x0) and (Y, y0) are homotopy equivalent =⇒ π1(X, x0) ∼= π1(Y, y0).

□

Just like in the case of homology groups, Properties (i) and (ii) mean that the fundamental
group is functorial. In (iv)X and Y are meant to be homotopy equivalent as pointed topological
spaces. The proof is left as an exercise to the reader.

Notice also that the first two properties of the above theorem imply that f∗ is an isomorphism
provided f is a homeomorphism. In other words, the fundamental group is an invariant of
(pointed) topological spaces (more precisely, the isomorphism class of the fundamental group
is an invariant). Notice also, that nevertheless, it may happen that f is injective and f∗ is not.
Likewise, f may be surjective and f∗ may fail to be surjective.

We finish this section by the following elementary fact.

Theorem 4.8. For any two pointed topological spaces (X, x0) and (Y, y0) we have a natural
isomorphism

π1
(
X × Y, (x0, y0)

) ∼= π1(X, x0)× π1(Y, y0).

Proof. The proof follows immediately from the following elementary observations:

• Ω
(
X × Y, (x0, y0)

)
= Ω(X, x0)× Ω(Y, y0);
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• Ω
(
X × Y, (x0, y0)

)
∋ (u, v) ≃ (u1, v1) rel (x0, y0) ⇐⇒ u ≃ u1 rel x0 and v ≃

v1 rel x1.

These two observations imply that the natural map [(u, v)] 7→
(
[u], [v]

)
is an isomorphism. □

The reader may suspect that the fundamental group is intimately related to the first homology
group, since, after all, both are constructed starting from continuous maps I → X . This is true
indeed and the precise relation is known as the Hurewicz homomorphism, which is described
below.

Theorem 4.9 (Hurewicz homomorphism). Let X be a path-connected topological space. The
map

Ω(X, x0)→ S1(X), u 7→ u

induces a well-defined homomorphism (the Hurewicz homomorphism)

h : π1(X, x0)→ H1(X)

with the following properties: h is surjective and kerh = [π1, π1], where we abbreviated π1 :=
π1(X, x0) for brevity. In particular, H1(X) is the abelianization of π1, that is π1/[π1, π1] ∼=
H1(X). □

The proof of this theorem can be found for example in [Hat02, Thm. 2A.1]. L 18

4.2 Coverings
It is not easy to compute the fundamental group of a topological space just from the definition.
For example, even for the very simple topological space S1 it is not so clear what is its fundamental
group. However, a loop in X can (and should) be viewed as a continuous map S1 → X . Since
we are working in the category of pointed spaces, we require also u(1) = x0, where S1 is
thought of as the set of complex numbers of absolute value 1. In any case, if X = S1, we have
a well-defined map

deg : π1(S
1)→ Z deg[u] = deg u,

where deg u is the degree of u in the sense of Definition 1.18. We already know that this map
is surjective and we shall show below that this is in fact an isomorphism. However, the proof of
this fact requires the notion of a covering, which we consider next.

Definition 4.10. A covering of a topological space X consists of a topological space Y and a
map p : Y → X with the following property: For any x ∈ X there exists a neigbourhood U ∋ x
such that

p−1(U) =
⊔

y ∈ p−1(x)

Vy and p
∣∣∣
Vy
: Vy → U is a homeomorphism (4.11)

for each y ∈ p−1(x).

We always assume thatX and Y are (path)-connected. Otherwise we can consider coverings
of connected components individually.

Notice that the definition yields that each fiber p−1(x) is a discrete set, since each Vy contains
a unique point from p−1(x), namely y. If this set is finite for any x ∈ X , then #p−1(x) is
constant over U . Hence, x 7→ #p−1(x) is a locally constant function and, therefore, is constant.
Denoting this common value by n, we say that Y is an n-sheeted covering of X .
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Example 4.12.

(i) The map exp: R→ S1, exp(x) = e2πix satisfies (4.11) demonstrating that R is a covering
of S1. Furthermore, p−1(1) = Z and for any U ⫋ S1 we have

exp−1(U) =
⊔
i∈Z

Vi such that exp: Vi → U is a homeomorphism.

(ii) Consider the map p2 : S1 → S1, p2(z) := z2. The preimage of each point consists of
exactly two points, which differ by the sign. Furthermore, for U = {z ∈ S1 | −π

2
<

arg z < π
2
} we have

p−1(U) = V+ ∪ V−, where V+ :=
{
− π

4
< arg z <

π

4

}
and V− := −V+.

This demonstrates that any point in U has a neighbourhood such that (4.11) holds. It is
then easy to see that in fact any point in S1 has this property so that S1 is a 2–sheeted
(=double) covering of itself.

Moreover, it is clear that for any n ∈ N the map pn : S1 → S1, pn(z) = zn satisfies (4.11).
Thus, S1 is also an n–sheeted covering of itself.

(iii) Consider the natural projection π : Sn → RPn, x 7→ π(x) = R · x. For any V ⊂ Sn we
have π−1

(
π(V )

)
= V ∪

(
−V

)
. Hence, for any p ∈ RPn we can pick a point p+ ∈ π−1(p)

and a small neighbourhood V+ of p+ such that

π−1(U) = V+ ⊔ V−, where U := π(V+) and V− := −V+.

Moreover, in this case π : V± → U is a homeomorphism so that Sn is a double covering
of RPn.

Notice that the natural projection π : Rn+1 \ {0} → RPn is not a covering, since, for
example, the fibers of this map are not discrete. Nor is the map pn : C → C a covering for
n ̸= 1, since #p−1

n (1) = n and #p−1
n (0) = 1.

The following terminology will be useful in the sequel.

Definition 4.13. A map f̃ : Z → Y is said to be a lift of f : Z → X if p ◦ f̃ = f .

Theorem 4.14. Let p : Y → X be a covering.

(i) For any path u : I → X starting at some x0 ∈ X and any y0 ∈ p−1(x0) there is a unique
lift ũ : I → Y starting at y0.

(ii) For each homotopy h : I × I → X such that h(0, s) = x0 for all s ∈ I there is a unique
lift h̃ : I × I → Y such that h̃(0, s) = y0 for all s ∈ I .

Proof. Since I is compact, there exists a partition t0 = 0 < t1 < · · · < tn−1 < tn = 1 with the
following property: For each k ∈ N0, k ≤ n− 1 there exists Uk ⊂ X such that

(a) u
(
[tk, tk+1]

)
⊂ Uk;

(b) p−1(Uk) = ⊔jVkj and p : Vkj → Uk is a homeomorphism.
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We construct a lift of u by the induction on k. The initial step proceeds as follows. Since
x0 = u(0) ∈ U0, there exists some V0j such that y0 ∈ V0j . Hence, using the fact that p : V0j →
U0 is a homeomorphism, for t ∈ [0, t1] we define

ũ(t) = p
∣∣−1

V0j
◦ u (t).

Furthermore, suppose that ũ : [0, tk] → Y has been constructed. Since u(tk) ∈ Uk, there
exists some j = j(k) such that ũ(tk) ∈ Vkj . By (a) combined with the fact that p : Vkj → Uk is
a homeomorphism, we obtain an extension of ũ to [tk, tk+1] by setting

ũ(t) = p
∣∣−1

Vkj
◦ u (t), for t ∈ [tk, tk+1].

This finishes the proof of the existence of ũ.
To prove the uniqueness, assume that ũ and û are two lifts of u. Denote

τ̄ = sup
{
τ ∈ I | ũ = û on [0, τ ]

}
.

If τ̂ = 1 we are done, otherwise there exists a unique k ≤ n− 1 such that τ̄ ∈ [tk, tk+1). Since
ũ(tk) = û(tk), we must have

ũ(t) = p
∣∣−1

Vkj
◦ u (t) = û(t) for all t ∈ [tk, tk+1]

contradicting the definition of τ̄ . This contradiction finishes the proof of (i). The proof of (ii) is
similar and is left to the reader. □

Corollary 4.15. If p : Y → X is a covering and p(y0) = x0, then p∗ : π1(Y, y0)→ π1(X, x0) is
injective. Moreover,

Im p∗ =
{
u ∈ Ω(X, x0) | ũ ∈ Ω(Y, y0)

}
.

Proof. Assume v ∈ Ω(Y, y0) represents an element in ker p∗. This means that u = p ◦ v is
homotopic to the constant path x0. If h is a homotopy between u and x0, let h̃ be the lift
provided by Theorem 4.14, (ii). Since h(1, s) = x0, we have h̃(1, s) ∈ p−1(x0). By recalling
that p−1(x0) is discrete, we obtain that the map s 7→ h̃(1, s) is constant, since this is a continuous
map. Furthermore, by the uniqueness of the lift we have

ũ = v = h̃(·, 0) =⇒ h̃(1, 0) = v(1) = y0 =⇒ h̃(1, s) = y0 ∀s ∈ I.

Hence, h̃ is a homotopy between v and the constant loop so that ker p∗ is trivial indeed.
Furthermore, if [u] ∈ Im p∗, then there exists some v ∈ Ω(Y, y0) such that p ◦v is homotopic

to u. Arguing just like above, we obtain a homotopy h̃ between the lift ũ starting at y0 in Y and
the lift of p ◦ v, that is v. Moreover, h̃(1, s) is constant, hence h̃(1, s) = h̃(1, 1) = v(1) = y0.
Hence, ũ(1) = h̃(1, 0) = y0, that is ũ is a loop based at y0. □

Corollary 4.16. The fundamental group of the circle is infinite cyclic, that is π1(S1, 1) ∼= Z.

Proof. Recall that the circle S1 is covered by R, see Example 4.12, (i). Hence, any loop u in S1

based at 1 admits a lift ũ : I → R starting at the origin. Consider the map

e : Ω(S1, 1)→ p−1(1) = Z, u 7→ ũ(1).

Since R is path-connected, this map is surjective.
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By the proof of Corollary 4.15, we obtain that if u is homotopic to v, then ũ(1) = ṽ(1).
Hence, the map e yields a well-defined surjective map (still denoted by the same letter)

e : π1(S
1, 1)→ Z, u 7→ ũ(1).

In fact, e is a group homomorphism. To see this, notice that if u, v ∈ Ω(S1, 1), then the lift
of u ∗ v starting at the origin is the curve

t 7→

{
ũ(2t) if t ∈

[
0, 1

2

]
,

ṽ(2t− 1) + ũ(1) if t ∈
[
1
2
, 1
]
,

so that e(u ∗ v) = e(u) + e(v).
Furthermore, if [u] ∈ ker e, then the lift ũ is a loop in R. Since R is contractible, we have

[ũ] = 0 =⇒ [u] = exp∗[ũ] = 0. Hence, e is injective. However we have seen above that e is
also surjective. Thus, e is an isomorphism. □

L 19

4.3 Uniqueness of coverings
In this section I show that a covering p : Y → X is uniquely determined (in a suitable sense)
by the image of the fundamental group of Y in the fundamental group of X . To this end, the
following will be useful.

Lemma 4.17. Let p : (Y, y0) → (X, x0) be a covering, where both X and Y are connected.
For any continuous map f : (Z, z0) → (X, x0), where Z is path-connected and locally path-
connected the following holds:

∃! lift f̃ : (Z, z0)→ (Y, y0) ⇐⇒ f∗
(
π1(Z, z0)

)
⊂ p∗

(
π1(Y, y0)

)
. (4.18)

Sketch of proof. If there exists a lift, then p ◦ f̃ = f =⇒ Im f∗ ⊂ Im p∗ ⊂ π1(X, x0).
Furthermore, we need to show that the lift does exist and is unique provided Im f∗ ⊂ Im p∗.

To this end, assume first that f̃ exists. Since Z is path-connected, for any z ∈ Z we can find a
path u connecting z0 with z. Then f̃ ◦ u is a path in Y projecting to f ◦ u. In other words, f̃ ◦ u
is the unique lift of f ◦ u beginning at y0. In particular, at the terminal point we must have

f̃(z) = f̃ ◦ u (1) (4.19)

so that f̃ is unique if it exists.
The idea behind the proof of the existence of a lift is to utilize (4.19) to define f̃ . To explain,

let u be a path in Z connecting z0 with z as above. Define f̃ by (4.19). To show that this is
well defined, let v be any other path connecting z0 with z. Then u ∗ v̄ is a loop based at z0 and
therefore by (4.18) and Corollary 4.15, the lift of f ◦ (u ∗ v̄) is a loop in Y based at y0. This
implies

f̃ ◦ u(1) =
(
f̃ ◦ v

)
(1),

thus proving that f̃ is well defined.
It is also pretty clear that f̃ is continuous, since essentially f̃ is obtained as a composition

of f and p−1 restricted to a sufficiantly small open subset. The details can be found for example
in [Mas91, P. 129] (this uses the local path-connectedness of Z) □
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Let p1 : (Y1, y01)→ (X, x0) and p2 : (Y2, y02)→ (X, x0) be two covering spaces.

Definition 4.20. A homomorphism of Y1 into Y2 is a continuous map φ : Y1 → Y2 such that the
diagram

Y1 Y2

X

φ

p1 p2

commutes. A homomorphism φ is called an isomorphism is there exists a homomorphism
ψ : Y2 → Y1 such that ψ ◦ φ = idY1 and φ ◦ ψ = idY2 . In the case Y1 = Y2 = Y and p1 = p2, an
isomorphism φ : Y → Y is called a deck transformation.

Corollary 4.21. Let p1 : (Y1, y01)→ (X, x0) and p2 : (Y2, y02)→ (X, x0) be two path-connected
and locally path-connected covering spaces. Then Y1 and Y2 are isomorphic if and only if
p1∗

(
π1(Y1, y01)

)
and p2∗

(
π1(Y2, y02)

)
are conjugate in π1(X, x0).

Proof. Let u be a loop in X based at x0 such that

p2 ∗
(
π1(Y2, y02)

)
= [ū] · p1 ∗

(
π1(Y1, y01)

)
· [u]. (4.22)

If ũ is the lift of u starting at y01, denote by y′01 the terminal point of ũ. By the proof of
Proposition 4.6, the map

P˜̄u : Ω(Y1, y
′
01)→ Ω(Y1, y01), v 7→ ˜̄u ∗ v ∗ ũ

induces an isomorphism π1(Y1, y
′
01)→ π1(Y1, y01). Combining this with (4.22) we obtain

p1 ∗
(
π1(Y1, y01)

)
= [u] · p1 ∗

(
π1(Y1, y

′
01)

)
· [ū] =⇒ p1 ∗

(
π1(Y1, y

′
01)

)
= p2 ∗

(
π1(Y2, y02)

)
.

The statement of this corollary follows from Lemma 4.17. □

Corollary 4.23. Let p : (Y, y0) → (X, x0) be a path-connected and locally path-connected
covering. Then for any y1, y2 ∈ p−1(x0) there exists a unique deck transformation φ such that
φ(y1) = y2. □

4.4 The universal covering space and the classification of the
covering spaces

Definition 4.24. A path-connected topological space Y is said to be simply connected, if π1(Y, y0)
is trivial for some (⇒ any) basepoint y0.

A simply-connected covering space of X is called the universal covering of X and is
typically denoted by X̃ . It follows from Corollary 4.21 that for a path-connected and locally
path-connected space X if the universal covering exists, it is unique up to an isomorphism.

It turns out that the universal covering plays a very particular rôle. Our aim in this section
is to show that simply connected coverings exist. This in turn will allow us to strengthen
Corollary 4.21 substantially.

Draft 64 December 14, 2023



Algebraic topology

Lemma 4.25 (A necessary condition for the existence of the universal covering). Assume
a path-connected and locally path-connected space X admits a simply connected covering
p : X̃ → X . Then for any x ∈ X there exists a neighbourhood U of x such that

ı∗ : π1(U, x)→ π1(X, x)

is the trivial homomorphism. This means that any loop in U based at x can be homotoped in X
to the constant loop.

Proof. Let U be a neighbourhood of x as in the definition of the covering. Pick any x̃ ∈ p−1(x)
and denote by V the component of p−1(U) containing x̃. Consider the commutative diagram

π1(V, x̃) −−−→ π1(X̃, x̃)(
p

∣∣
V

)
∗

y y
π1(U, x)

ı∗−−−→ π1(X, x).

Notice that the homomorphism represented by the left vertical arrow is in fact an isomorphism.
Since π1(X̃, x̃) is trivial, the image of ı∗ must be trivial, that is ı∗ is the trivial homomorphism.

□

Definition 4.26. A space X such that for any x ∈ X there exists a neighbourhood U of x
such that ı∗ : π1(U, x) → π1(X, x) is the trivial homomorphism is called semilocally simply
connected.

The infinite union of shrinking circles as in Example 3.7 yields an example of a space, which
is path-connected, locally path-connected, but not semilocally simply connected.

Theorem 4.27. Any path-connected, locally path-connected, and semilocally simply connected
space X admits a universal covering space X̃ .

Sketch of proof. Assume first that X admits a universal covering X̃ . Denote by p : X̃ → X the
projection and pick points x0 ∈ X and x̃0 ∈ p−1(x0) ⊂ X̃ . Since X̃ is path-connected, for any
x̃ ∈ X̃ there is a path ũ connecting x̃0 with x̃.

If ṽ is any other path with the starting point x̃0 and the terminal point x̃, then we have

ṽ ≃ ṽ ∗ (¯̃u ∗ ũ) ≃ (ṽ ∗ ¯̃u) ∗ ũ ≃ ũ. (4.28)

Here the first and the second relations follow from the proof of Theorem 4.3, whereas the last
one follows from simply connectedness of X̃ . Notice that all homotopies in (4.28) preserve the
ends of the corresponding paths, that is ũ and ṽ are homotopic relative to the endpoints.

Thus, for any x̃ ∈ X̃ there is a unique equivalence class of paths connecting x̃0 with x̃.
However, each ũ as above is the unique lift of u := p ◦ ũ starting at x̃0. Therefore, we have a
natural bijective map

X̃0 :=
{
[u] | u is a path in X starting at x0

}
→ X̃, [u] 7→ ũ(1),

where the equivalence relation for X̃0 is given by the existence of homotopies relative to the
endpoints.

The idea is now to define the universal covering as X̃0. Notice that we have a natural map

p : X̃0 → X, [u] 7→ u(1).
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It can be shown that X̃0 admits a unique topology such that the above map is a covering [Mas91,
P. 143–144].

To show that X̃0 is path-connected, for any [u] ∈ X̃0 consider the map

s 7→ us(t) :=

{
u(t) if t ≤ s

u(s) if t ≥ s.

This yields a path in X0 between the constant path x0 and [u].
It remains to show that π1(X̃0, x0) is trivial. Since p∗ is injective, it suffices to show that

the image of π1(X̃, x0) in π1(X, x0) is trivial. Any element in Im p∗ is represented by [u] ∈
π1(X, x0) such that u lifts to a loop in X̃0. By the uniqueness of the lift, the curve

s 7→ [us] (4.29)

is the lift of u starting at the constant loop x0. This curve is a loop in X̃0 if [u1] = x0, that is
[u] = x0. This finishes the proof. □

Theorem 4.30. Let (X, x0) be a path-connected, locally path-connected, and semilocally path-
connected space. There is a natural bijective correspondence between the set of all path-
connected coverings of X up to isomorphisms and the conjugacy classes of subgroups in
π1(X, x0).

Proof. Given a path-connected covering p : Y → X , pick any y0 ∈ p−1(x0) and associate the
conjugacy class p∗(π1(Y, y0)) to Y . This is well defined and injective by Corollary 4.21.

Thus, we need to show that for any subgroup H in π1(X, x0) there exists a covering (Y, y0)
such that p∗

(
π1(Y, y0)

)
is conjugate to H . Let X̃0 be defined as in the proof of Theorem 4.27.

Define an equivalence relation on X̃0 by

[u] ∼ [v] ⇐⇒ u(1) = v(1) and [u ∗ v̄] ∈ H.

The fact that H is a group implies that ∼ is an equivalence relation.
Denote Y := X̃/ ∼. We still have a natural map

q : Y → X, q
(
[u]

)
= u(1),

which can be shown to be a covering.
Just like in the proof of Theorem 4.27, one can show that for any loop u in X based at x0

the lift ũ to Y is given by (4.29). This is a loop in Y if and only if

[u] = [u1] ∼ x0,

where x0 denotes the class of the constant loop. This is clearly equivalent to saying that [u] ∈ H .
In other words, by Corollary 4.15 we have

[u] ∈ q∗
(
π1(Y, x0)

)
⇐⇒ [u] ∈ H,

which proves the existence part. □

Let me note in passing that the hypotheses of Theorem 4.30 are not very restrictive. In
practice, one is usually interested in covering spaces of reasonably nice spaces, for example
manifolds. In this category, the hypotheses of being locally path-connected and semilocally
simply connected are satisfied automatically. Thus, for any path-connected (⇔ connected)
manifold M there is a bijective correspondence between conjugacy classes of subgroups of
π1(M) and its coverings. L 20
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