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Chapter 1

Introduction

The main purpose of this chapter is to explain informally the main ideas which will be developed
in details later. In particular, the proofs are rather sketchy stressing main ideas only. More
precise statements and proofs will be given in the subsequent chapters.

1.1 Differential forms, the theorems of Green and Stokes

Let w = P(x,y)dr + Q(z,y)dy be a 1-form on an open subset U C R?. For example, if
f: U — Ris a smooth map, then the differential df = %dm + g—’ycdy is a 1-form.

Question 1.1. Under which circumstances does there exist some function f as above such that
w =df?

Clearly, we have the following necessary condition:

P 9Q
= o (1.2)

Proposition 1.3. If U is convex, then (1.2) is also sufficient.

Sketch of proof. Theorem of Green = For any closed piecewise smooth curve C' C U
without self-intersections we have

/(Pdm+Qdy // %—8—13 dxdy:(), (1.4)

where D is the domain bounded by C. Notice that here we use the convexity of U, since
otherwise C' does not necessarily bound any domain.

Pick any (z¢,yo) € U. Forany (x,y) € U choose a curve C’ connecting (¢, yo) and (z, y).
Define

flx,y) = / Pdx+ Qdy.
Property (1.4) guaranties that f does not depend on the choice of C”. UJ

The following example shows that (1.2) is not sufficient for general U.

Example 1.5. Consider U = R?\ {0} and

Yy Xz
w=— dr + ———=dy.
$2+y2 $2+y2y
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If there were some f such that w = df, then we would have f g1 w = 0, where S is the circle (for
example, parametrized via ¢ — (cost,sint)). This is a contradiction, since | g w =21 #0.

Notice that the proof of Proposition 1.2 does not work here, since the theorem of Green does
not apply for (D, w), where D is the unit disc.

Remark 1.6. One can show that for any closed piecewise smooth curve C' C R? \ {0} we have

1 Y T
= [ (- d dy)
2m c< x? + 1 v 2ty
is an integer.
Let U be an open subset of R? and w = P dx + Q dy + R dz be a 1-form. We can also ask
whether w = df for some f: U — R. Clearly, we have the following necessary condition:

on_og op_on
oy 0z 0z  Ox’

0Q 0P
d —=—. 1.7
an ox dy (1.7)
Proposition 1.8. If U is convex, then (1.7) is also sufficient.

The proof of this proposition is analogous to the proof of the previous one. Just instead of
the theorem of Green we have to use the theorem of Stokes:

/Cde+Qdy+Rdz://Z<g—];—%—cj> dydz+<%—f—g—f> dzdx+(g—§—g—§) dz dy.

Proposition 1.9. Condition (1.7) is also sufficient for R? \ {0}.

Sketch of proof. Let C' C R? be an arbitrary simple picewise smooth curve without self-intersections.
Then there is a picewise smooth surface ¥ C R? such that 9X = C. If 0 € X, a (small)
perturbation yields a surface ¥’ C R* \ {0} such that 9% = C. O

For a general U, Condition (1.7) is still insufficient, which is easily seen for the following
example: U = R3 \ {z — Axis} and

Yy X
=— dr + ——=dy.
“ r? + y? $+x2+y2y

From this discussion we can make the following informal conclusion: Condition (1.7) is
sufficient as long as U has no “holes” of codimension 2.

1.2 Ansatz of a construction.

Let X C R" be an arbitrary subset, which is equipped with the induced topology. Define Z; (X)
as a free Abelian group generated by (oriented) closed curves, i.e.,

/Cw:znk/%w.

where n; € Z. Define
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Remark 1.11. If Cy is a closed oriented curve, 2C can be understood as “running along Cj twice
in the same direction”. Similarly, —Cj, can be understood as the curve C, with the opposite
orientation. However, in most cases we treat (1.10) purely formally.

Assume temporarily that X is an open subset of R?. We would like to define an equivalence

relation such that
C~(C = / W= / w
C !

holds for all w = P dzx + @ dy satisfying (1.2). The theorem of Green (or Stokes in the case
U C R3) suggests the following:

C ~C" <« dacompact oriented surface ¥ such that 9% = C'U —(C". (1.12)

Here C and C' are oriented curves and ¥ is an oriented surface such that 02X = C U —C" as
oriented curves. This definition also makes sense even in the case when X is not necessarily
open.
More generally, a cycle C' = C} + - - - + C} is called null homologous, i.e., C ~ 0, if and
only if
J a compact surface > such that 90X = C, U --- U C,.

Clearly, Condition (1.12) can be written as C' 4+ (—C") ~ 0.

Example 1.13. Null homologous cycles on the 2-sphere with 2 points removed (equivalently,
R\ {0}).

Even more generally, each linear combination of null homologous cycles is also declared to
be null homologous.

Z1(X) D By(X) = {null homologous cycles}.

H(X) := Z1(X)/B;(X) the first homology group of X.

Example 1.14. H,(S*\ {p,q}) = Z.

Problems: Curves C' and surfaces > can have singularities and self-intersections.

More generally:

* Z,(X) freely generated by compact oriented n-dimensional “surfaces” without boundary.

* Z,(X) D B,(X) the subgroup generated by the boundaries of compact oriented (n + 1)-
dimensional “surfaces”.

* H,(X) = Z,(X)/B,(X) the nth homology group of X.

In general, we would like to associate to each topological space X a sequence of abelian
groups Hy(X), Hi(X), ..., H,(X),... such that the following holds:

(a) Each continuous map f: X — Y induces a sequence of homomorphisms f,: H,(X) —
H,(Y);

(b) (f ° g)* = fio s idi =1d.
(¢) Ho({pt}) = Z and H,({pt}) = 0 forall n > 1.

(d) H,(S") = Z provided n > 1 and Hi(S™) = 0 for all £ > n + 1 (More generally,
for each compact connected oriented manifold M of dimension n the following holds:
H,(M)=7Zand H,(M) =0forall k > n + 1).

Draft 4 December 14, 2023
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@) f~g = fi= g

Here two continuous maps are said to be homotopic (f ~ g), if there exists a continuous map
h: X x [0,1] — Y, called homotopy, such that the following holds:

h|X><O =f and h|X><1 =4g.
Question 1.15. What does make Properties (a)-(e) interesting?

This question will be answered in the subsequent sections. We finish this section by the
following fact, which will be useful below.

Proposition 1.16. If f is a homeomorphism, then each f.: H,(X) — H,(Y) is an isomorphism.

Proof. idy, = id, = (fo f')s = fio(f™Y). = f. is an isomorphism and (f,)™! =
(f s N

1.3 The theorem of Brouwer
In this section we show that (a)-(e) imply the following famous result.
Theorem 1.17 (Brouwer). Any continuous map f: B, — B, has a fixed point.

Proof. The proof consists of the following three steps.
Step 1. For the ball B, :== {x € R" | |z| < 1} we have Hy(B,,) = 0 forall k > 1.

Let ¢: B, — {0} be the constant map. The map h(x,t) = tz, t € [0,1] is a homotopy
between idp und 2oc, where 2: {0} — B, is the inclusion. Thus, id = t,0c, = Hy(B,) =0

for all k£ > 1, since Imz, = {0}.

Step 2. There is no continuous map g: B, — 0B, = S™ ! such that g(x) = x holds for all
re Shl

Assume n = 1 first. In this case there is no continuous map g: [—1,1] — {£1} as in the
statement of this step, since the target space {£1} is disconnected, whereas the interval [0, 1] is
connected.

Let us consider now the case n > 2. Assume there is such g: B, — S™~!. Then we have

Z.dsnfl = goilgn-1 — (idSnfl)* = (g« ° (ZSnfl)* =0 on Hn_l(Sn_l)
— anl(snil) = 0.

This contradiction proves Step 2.
Step 3. We prove the theorem of Brower.

Assume there exists a continuous map f: B, — B, without fixed points. Then there also
exists a continuous map g: B, — S™ ! such that g|gn—1 = id:
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This contradicts Step 2. O

1.4 The degree of a continuous map and the fundamental
theorem of algebra

In this section we show that (a)-(e) imply that any non-constant polynomial with complex
coefficients has at least one root. This statement is known as the fundamental theorem of
algebra.

Thus, pick any n > 1 and choose a generator « € H,(S"), i.e., an element « such that

H,(S")=7Z- .
Definition 1.18. For any continuous map f: S™ — S™ define deg(f) € Z by
fra = deg(f)a.

The degree of a map does not depend on the choice of a generator, since f,(—a) = — f.a =
—deg(f)a = deg(f)(—a).
Lemma 1.19. The degree has the following properties:
(i) deg(id) = 1;
(ii) deg(f og) = deg f - degyg;
(iii) f ~g = deg f =degg;
(iv) deg(const. map) = 0.
O

Lemma 1.20. For S' := {2z € C | |z| = 1} define f,,: S* — S by f,.(z) = 2", where n € Z.
Then we have
deg f,, = n.

Idea of proof. The curve
a: [0,27] — S, aft) = cost +sinti = e”,
generates H;(S). Since f,ca(t) = €™ = cos(nt) + sin(nt)i, from the definition of the degree

and Remark 1.11 we have deg f,, = n. O
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Theorem 1.21 (The fundamental theorem of Algebra). Each non-constant polynomial p(z) =
V412" Larz + ag, a; € C has at least one complex root.

Proof. 1dentify S* with S} := {z € C | |z| = r} = S* with the help of the homeomorphism
St — S, Z Tz

The proof consists of the following three steps.

Step 1. Let f: C — C be a continuous map without zeros. Then for each r > 0 the map

7. St gt (1.22)

I

is homotopic to the constant map.
Indeed, a homotopy can be given explicitly by

F(z,t) = |;EZ;!’ ze S telo,r].

Step 2. Let p(z) = 2" +a, 12" +. .. a12+ag be a polynomial without zeros. Then there exists
some R > 0 such that the following holds: ¥r > R the restriction of p/|p| to S} is homotopic

to fy.

For all z € C such that |z| > 1 we have

|an 12" 4 iz ag] < a2+ + 2] + Jaol

< nmax{|a,_1|,...,|ai], ]ag]}]z\"*l

Choose R so that R > nmax{|an_1],...,|a1|,|ao|} and R > 1. For all » > R and all
t € [0, 1] the polynomial

pe(z) = 2"+ t(an—lzn_l +-otarz+ ao)
has no zeros on S}, since
!an_lz”_l + -t agz+ a0’ < Rr"t <", provided |z| =1

Then )
Y 43¢
PO =130

is a homotopy between p/|p| and f,, viewed as a map on S!.

St

Step 3. We prove the fundamental theorem of algebra.

Assume p is a non-constant polynomial without zeros. Denote

_ p(2)
p(2)[ 13’

q-(2)

where r > R. Step2 =—> degq, = n. Step 1| = deggq, = 0,1i.e., n = 0. Thus, pisa
constant polynomial, which is a contradiction. 0
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Chapter 2

Singular homology

2.1 Free abelian groups

An abelian group G is called free with a basis A C G, if Vg € G there exists a unique
representation g = Y _, n,a, where n, € Z and n, # 0 for finitely many a € A only.
Any set A generates an abelian group F'(A), which is free with a basis A. Indeed, define

F(A):={f: A= Z| f(a) # 0 for finitely many a € A only}.

Clearly, the functions

0 otherwise,

fa(yc):{1 x:a,. ac A

generate F'(A), that is F'(A) is free with a basis A.
Remark 2.1. For any f € F/(A) we have

f=> fla)f
acA

In particular, F'(A) can be viewed as the group of all finite formal linear combinations ) __ , nea,
where n, € Z.

2.2 Singular simplexes

Letzg, x1, . . ., be arbitrary points in R such that x; —xy, . . . , xp —x( are linearly independent.

Definition 2.2. The space

Ar = Az, ..., xp {x—zt$z|t601 zk: }

=0
is called the (non-degenerate) k-simplex generated by xy, . . . , x.
Example 2.3.
0) If £ = 0, then A(zo) = {zo}.
1) If k = 1, then A(zy, x1) is a segment [z, z1].
(
(

2) If k = 2, then A(xg, 71, x3) is the triangle with the vertices xg, z1, 2.
3) If k = 3, then A(xg, z1, x3, x4) is a tetrahedron with the vertices xg, 1, T3, 4.

8
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Remark 2.4. The representation x = Zf:o t;z; of a point in Ay, is unique. Indeed, > t;x; =

dositi, > ti=1=>"5 =

The coefficients (g, t1,...,tx) € [0,1]*"! are called the barycentric coordinates of the point
x € Ay. In particular, each k-simplex is homeomorphic to the standard k-simplex

Ak = A(el, vy €k, €k+1) C Rk+1,

where e;, ..., e is the standard basis of R¥+1.
It is customary to drop the adjective “non-degenerate” when referring to simplexes. Sometimes
degenerate simplexes (in the sense that xy — xg, ...,z — xo may be linearly dependent) do
appear below. Typically, this poses no problems, however the barycentric coordinates are ill
defined in this case.

From now on we pick one simplex in each dimension, for example the standard one.

Definition 2.5. Let X be a topological space. A singular k-simplex in X is a continuous map
f:AF = X,

In particular, a singular O-simplex in X can be viewed as a point in X, a singular 1-simplex
as a path in X etc.

Remark 2.6. The map f in the above definition does not need to be injective. In particular, the
image of f may be (highly) singular.

For a singular k-simplex f: A*¥ — X the (k — 1)-simplex defined by
8Zf Akil — X, 8’f(t0, e 7tk—1) = f(t(), .. 7ti—17 O, ti, e ,tk_l)

is called the ith face of f.

f(e2)

f(e1)

Figure 2.1: Faces of a singular simplex
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Definition 2.7. Denote by Si(X) the free abelian group generated by all singular k-simplexes.
Elements of Si(X) are formal linear combinations of the form

o= Znifia n; € 4,

which are called singular k-chains. The (k — 1)-chain

_ 1)jajf’
J=0 (2.8)

-

Of =0°f =0 f+Pf — =

DMWY

is called the boundary of f and o respectlvely.

Proposition 2.9. The homomorphism
Su(X) 25 Sy (X) 275 S, o (X)
is trivial, that is O_1 o O, = 0 (or; simply 0* = 0) for all k > 1.
Proof. The proof consists of the following two steps.
Step 1. Let f be a singular simplex. for each j > i we have
HO'f =00,
Indeed,
IOty th) = f(toy- - tj—1,0,t5, ... ty_2)
= f(to,-..,ti—1,0,t;,... i-1,0,¢5,. .. Jtk_2);

ai(aj+1f)(t07 s )tk—2> = aj+1f(t07 s 7ti—17 07 tia s 7tk:—2)
— f(t(), e ,tifl, O,ti, e 7tj717 O,tj, e ,tkfg).
Step 2. For each singular k-simplex we have 0(0f) = 0.

This follows from the following computation'

k—1
0(0f) = Z( YO (Of) = ZZ e f = Z+Z )i

i=0 i=0 j=0 j=>i Jj<i

_ Z(_l)i-i-jaj—laif + Z(_l)i-i-jaian
j>i j<i

— Z (_1)p+q+1apaqf + Z(_1>p+qapaqf pi=j—1 qg:=i
pt+1>g p>q

=0.

Corollary 2.10. im 0, C ker 0y_1.

The elements of Zj,_1(X) := ker dy_; are called cycles and the elements of Bj_;(X) :=
im O, are called boundaries.

Definition 2.11. The group

Hk_l(X) = ker 8k_1/ im 8k = Zk_l(X)/Bk_l(X)
is called the (k — 1) th (singular) homology group of X (with integer coefficients). In particular,
Hy(X) := Sp(X)/im 0.
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2.3 Some properties of the homology groups

Proposition 2.12.
X path connected = Hy(X) = Z.

Proof. So(X) is the free abelian group generated by the points of X. Let f be a singular 1-
simplex, that is f: [0, 1] — X is a path in X. By the definition of the boundary, 0f = x; — =,
where z; = f(1) and o = f(0). By the hypothesis, we can connect any two points in X by a
path, that is for any two points xg, z1 € X we have [zo] = [21] € Ho(X).

Furthermore, define the homomorphism «: Sy(X) — Z by

Since a(0f) = 0 for each singular 1-simplex (hence, for each singular 1-chain), « yields a
surjective homomorphism Hy(X) — Z, which is still denoted by «.

Suppose ([} n;z;]) = 0. Then [ nz;] = > nifa;] = (3 n)[xo] = 0, that is o is
injective. Thus, « is an isomorphism. 0

Exercise 2.13. If X is not necessarily path connected, then the following holds: Hy(X) = Z™,
where m is the number of path-components of X.

Proposition 2.14.
if k=0,

else.

H({p) = {f

Proof. For k = 0 the statement of this proposition follows from the previous one. Hence, we
may assume k > (. For each such k there is exactly one k-simplex in {pt}, namely the constant
map, which we denote by ¢;: AF — {pt}. For the boundary we have

k
o 0 for k£ odd
— -1 2 9 — ) ’
9 ZZ_;( ) éf-k/ {Ck—l for k even.
Ck—1
Hence,
Si({pt}) fork odd,
Z t}) =
k({p }) {O for k£ even
and
Se({pt}) fork odd,
B t}) =
g ({p }) {0 for k£ even.
Thus Hy, ({pt}) = Ze({pt})/Bi({pt}) = 0. O

Definition 2.15. A topological space X is said to be contractible if there is a point zo € X such
that the identity map id x is homotopic to the constant map c,,.

Proposition 2.16. A contractible space has the same homology groups as a point, that is

z ifk =0,
0 ifk>1

whenever X iscontractible.
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Proof. Since X is contractible, there exists a continuous map h: X x [0,1] — X such that
h(z,0) = z and h(z,1) = x( hold for any = € X. In particular, for a fixed z € X the path
t +— h(t,z) connects x and x(. This implies that X is path connected, hence Hy(X) = Z by
Proposition 2.12.

Thus, we assume £ > 1 in the sequel. Consider the quotient map

m: AR [0,1] — AR = (AR x [0, 1)) /(AR x {1})
((to, ceyte—1), u) > (u, (I —w)tg,...,(1— u)tk,l).

Define s: Sj_1(X) — Si(X) as follows: Since 7 is a quotient map and h|x 1} = o, by the
universal property of the quotient map for each singular (kK — 1)-simplex o: A¥~1 — X there
exists a unique map s(o): A*¥ — X such that h o (¢ x id) = s(o) o m, that is the diagram

AR T — 5 AF

UXidJ, J{s(o)

XxI —u x

commutes. Explicitly,

5(0)(t0,t1,...,tk):h<a( b T ),t0>

T—ty 1 —t

whenever to # 1 and s(o)(ty, ..., %, 1) = xo. Hence,
1. 3s(0)) =0,
2. &'s(o) = s(0" o) fori > 0.

Extending s by linearity to all of Si_;(X), for any o € S;(X) we have

e
—_

I(s(o)) = °(s(0)) — Z(—l)i_lai(s(a)) =0— Y (=1)s(¥0)=0—5(00). (2.17)

=1

<.
Il
o

This yields
Jdos+sod=id.

Hence, if o is a cycle, then o = 9(s(0)) + s(d0) = d(s(0)), i.e., any cycle is a boundary. In
other words, Hy(X) = 0 whenever k£ > 1 as claimed. O

Theorem 2.18. Ler f: X — Y be a continuous map. Then for each k > 0 the map f induces
a group homomorphism

and for any other continuous map g: Y — Z we have

(go fle=guo fu
Finally, (idy), = id.
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Proof. Define first group homomorphisms fx: Si(X) — Si(Y'), by declaring
o— foo for o:A¥ = X.

Then for all singular k-simplexes o: A¥ — X we have
(f#al(o-))<t07 R 7tk—1) = f(O'(to, R 7ti—17 07 ti7 R 7tk—1))
= (f#O')(to, Ce ,tifl, O,ti, ce ,tkfl)
= 0'(fyo)(to, ., te—1),
and therefore f40" = 0" f4, which yields in turn that fy is a chain map, i.e.,

J40 =0f4.

This yields in particular that cycles are mapped to cycles and boundaries are mapped to
boundaries:

Hence, we obtain a well defined group homomorphism:
for Ho(X) = Zi(X)/Br(X) = Zp(Y)/Bi(Y) = Hi(Y)
fullo]) = [f(0)].
Furthermore, for each singular k-simplex o: A* — X we have

g# © f4(0) = gu(foo)=gofoo= (g0 f)u(o),
g« © fu([0]) = 9.[f4(0)] = [g4 © fy(0)] = [(9 0 )4 (0)] = (g 0 f)«([0]),
(idx)#(0) =
(

=0,  (idx).([o]) = [(idx)x(0)] = [o].
Therefore, g, o f. = (g o f). and (idx). = id. O
Corollary 2.19. If f: X — Y is a homeomorphism, then f,.: Hi(X) — H(Y) is an isomor-
phism for each k. 0

2.4 Homotopies and homology groups

Theorem 2.20. If f,g: X — Y are homotopic maps, then the induced maps on the homology
groups are equal:

f>=yg = Je = gs
Proof. The proof consists of the following three steps.

Step 1. Define
ne: X = X x 1, m(x) = (z,1).

For each continuous map f: X —'Y we have (f X z'al)#gylf;é =0y o fa

This follows immediately from the observation that the diagram

n
X — X x 1T

I e

n
Y — Y x1I
commutes.
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Step 2. There exists a sequence of homomorphisms si : Sp(X) — Sk1(X x I) satisfying

Osp + Sp_10 = My — Mo (2.21)
(f xidp)yo sy = si © fa (2.22)

Define s;, = s;% recursively. For k = 0 and 7y € X, which we view as a O-simplex, put
Sp0 - Al 5 X x I, (to,tl) — (Io,tl).

Then we have d(sq0) = (zo,1) — (20, 0), i.e., (2.21) holds for & = 0. Equation (2.22) follows
directly from the definition of s.

Suppose s, has been defined for all / < k. We define first s in a special case, namely for
idax viewed as an element 1, € S;,(AF). We have

O( mawe — Mopte — Sk—10u, ) = MO, — MO — Osp_10u,

Esk(AkXI)

2.21) k
= igOu, — nopOue — (MmO, — NogOu, — si50%u,)
=0.

In this computation (2.21) is used with k replaced by k — 1. Since A¥ x I is contractible, there
exists some a € Sy,_1(AF x I) so that

Mtk — Noglk — Sk—101, = Oa.

Define sy (1) = a. Then (2.21) holds for o = 1.
In general, define s\ (0) = (o x id)ya. Then we have

O(syo) = (o x id)ga = (o x id)4Oa
= (0 x id) g (matn — Mogwe — skA_klazk)
= Mg Ol — Nog T4l — S 10200, (2.22) + Step 1
= M40 — Nopo — Sj_,00.

This proves (2.21).
We still have to show that (2.22) holds. Indeed,

(f X id)#SkU = (f X Zd)#(O' X z'd)#a = ((f o O') X zd)#a = Sk(f o O') = Sk(f#O').

Step 3. We prove this theorem.
Let h be a homotopy between f and g. From the following equalities

O(hy o i) + (hy © 81-1)0 = hyOsp + hayp(s5-10) = hayp (g — Mog) = f4 — 9%

we see that . — gu = O(hy o s;) holds on ker 0. This shows that f, = g.. OJ

Definition 2.23. A continuous map f: X — Y is called a homotopy equivalence, if there exists
a continuous map ¢g: Y — X such that the following holds:

go f ~idx and fog~idy.

In this case the spaces X and Y are called homotopy equivalent.
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Example 2.24. (1) Any two homeomorphic spaces are homotopy equivalent.

(ii) R™ is homotopy equivalent to {pt}. More generally, any contractible space is homotopy
equivalent to {pt}.

(iii) R™ \ {0} is homotopy equivalent to S™ 1.

To see (ii), let X be a contractible space and 7,,: {xo} — X be the embedding of the point
xo. Then ¢, © 15, = idy, and 1, © c;, ~ idx.

To see (iii), define f: R"\ {0} — S™ by f(z) = z/|z|. Ilf g: S" ! — R"\ {0} denotes the
inclusion, then f o g = idgn—1. Furthermore,

1

AR

x, x € R"\ {0},
is a homotopy between g o f and idgn\ (o).
Corollary 2.25.
f is a homotopy equivalence —> Yk f.: Hy(X) — H(Y) is an isomorphism.
Example 2.26. Since R" is homotopy equivalent to a point, we have

7Z k=0,
0 otherwise.

Hy(R") = H,({pt}) = {

Assuming the homology groups of the n-sphere are known, we have

Z k=0n-1,

Hy(R™\ {pt}) = Hy(S"") = {0 otherwise.

Notice that the latter isomorphism is established in Theorem 2.41 below.

2.5 Exact sequences and the Bockstein homomorphism
Definition 2.27. A sequence of homomorphisms of abelian groups

s — Ak:-i—l AZEN Ak S Akz—l — ... (228)

is called exact, if for all £ the following holds: ker o = im a 1.
Some special cases:
(i) 0 - A 25 Bisexact <  «is injective;
(i) A= B—0isexact < ais surjective;

(iii) 0 - A = B — Oisexact <  «is anisomorphism;

(iv) 0 - A 5 B Py 0 S 0isexact & ais injective, [ is surjective and ker § =
im «; In particular, 3 induces an isomorphism C' = B/A.

The sequence (iv) is called a short exact sequence.
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Example 2.29. 0 — 7 ="+ 7, — Z/nZ — 0 is a short exact sequence, where xn stands for
the multiplication by a fixed n € Z.

Let A be a complex, that is A is a sequence
0 0
A oo — Apy — Ay — A —

such that 9> = 0. Just like in the case of chain complexes, we define the kth homology group

of A tobe
o ker (8 Ak — Ak—l)

Hi(A) = .
W)= (0: Ak — Ay
Notice the following: Assuming (2.28) is a complex, i.e., ax11 © o = 0 holds for all k£, we
obtain that (2.28) is exact if and only if H,(A) = {0} for all k.

If A, B, and C are complexes, a sequence 0 — A -+ B L0 5 00f complexes is a
commutative diagram of the form

0 0 0
LN N LA N
- o -
2B 2B, -2 B, 2 .. (2.30)
Br+1 Bk Br—1
0 O 20, 20, 2

0 0 0

Such a sequence is called exact, if each vertical sequence 0 — A, — B, — C} — 0 is exact.
Here of course we could equally well consider sequences of complexes consisting of more
than 3 complexes.

Example 2.31. Let X, Y and Z be topological spaces and f: X — Y, g: Y — Z continuous
maps. Then one obtains a sequence of chain complexes

0= S.(X) 5 5.(v) 25 S.(7) = 0,

which is not necessarily exact. What conditions guarantee that the above sequence is exact will
be considered below.

Proposition 2.32. For any homomorphism of complexes o.: A — B we have a homomorphism
a: H.(A) — H.(B) of homology groups, which is still denoted by the same letter.

Proof. This follows immediately from the commutativity of (the upper part of) (2.30). ([l

Theorem 2.33. A short exact sequence of complexes 0 — A =+ B Ly © = 0 induces a
(long) exact sequence of homology groups:

oo = Hy(A) % Hy(B) 255 Hy(C) 5 Hyy(A) 5 Hy(B) — ...
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Remark 2.34. The map ¢ is called the Bockstein homomorphism.

Proof. The proof consists of the following four steps.
Step 1. We define 0.

Pick ¢ € Cy, dc = 0. Since f3y, is surjective, there exists some b € By such that 5(b) = c.
We have 5(0b) = 0(B(b)) = dc = 0. Since a: Ax_; — ker 1 is surjective, there is some
a € Ag_1 such that a(a) = 0b. By the commutativity of (2.30), we have a(da) = da(a) =
0%b = 0. Since « is injective, we obtain da = 0 so that we can define § by

In order to see that § is well-defined, pick another representative ¢ = ¢ + d¢” of the class [c].
For ¢’ € Cj41 there is some b” € By such that 5(b") = ¢ = p(b+ 0b") = ¢+ Oc”. This
yields V' = b+ 0b” 4+ a(a”), where a” € Aj. Furthermore, 0b' = 0b + 0 + «a(9da’). Since « is
injective, we have ¢’ = a + 0d”, i.e., [a] = [d/].

Exercise 2.35. Check that § is a group homomorphism.
Step 2. ker a = im .

Pick a € Aj_; such that [a] € ker o, i.e., a(a) = Ob for some b € By. We have 03(b) =
B(0b) = B(a(a)) = 0. By the construction of d, we obtain 6[3(b)] = [a]. That is ker &« C im 4.

If a € Ay is such that [a] € im ¢, then by the construction of §, we have a(a) = 0b —
ala] = 0.

Step 3. kerd = im f.

Pick some [c] € kerd. Using the notations of Step 1, we have a = 0a’ for some a’ € Ay.
The equations

(b —a(d)) =0b— a(dd") = db — afa) = 0;
B(b—ald)) = B(b) = ¢

yield 8[b — a(a’)] = [¢], i.e., ker § C im f.
The inclusion im 3 C ker d follows immediately from the construction of ¢.

Step 4. ker f = ima.

Assume b € By, satisfies 3[b] = 0, thatis 9b = 0 and 3(b) = Jc for some ¢ € Cy,. Since
f3 is surjective, there is some b € By such that §(b) = c. Furthermore,

B(b— 9b) = B(b) — 9B(b) = B(b) — De = 0.
This yields that there exists some a € Ay, such that a(a) = b — 9b. Moreover,
a(8a) = daa) = db — 8*b = 0.

Since « is injective, we obtain da = 0. This yields a[a] = [b — 8b] = [b], that is ker § C im ov.
The inclusion im o C ker /3 follows immediately from a0 = 0. O
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2.6 Relative homology groups

For each subspace A C X define
Sn(X, A) = 5,(X)/S.(A).

The boundary map on S,,(X) induces a boundary map on S,,(X, A) and we obtain the following
new chain complex:

o S (X, A) L S (X, A) L S, (X, A) L

The homology groups of this complex are denoted by H,(X, A) and are called the homology
groups of X relative to A, or, simply, relative homology groups. Let us provide some details of
this definition:

* Elements of H, (X, A) are represented by relative chains a € S, (X) such that da €

Sn—1(A);

*al=0€ Hy(X,A) <= a=0b+c¢, beS,1(X), ce S, (A).

By the very definition of S,,(X, A), the sequence 0 — S,(A4) — S.(X) — S.(X,4) = 0
is exact. Hence, Theorem 2.33 yields the following:

Theorem 2.36. There is a long exact sequence of the homology groups
o Hy(A) 255 Hy(X) 25 Hy(X,A) s Hy 1 (A) — ...

Moreover, the following holds:
* i, is induced by the inclusion i: A C X;
* j. is induced by the projection S, (X) — S,(X, A),
* dla] = [Dal.

5 (@)

Suppose A C X and B C Y. A map between pairs of spaces (X, A) and (Y, B) is a map
f: X — Y suchthat f(A) C B.

Proposition 2.37. Eachmap [: (X, A) — (Y, B) induces a homomorphism of relative homology
groups H,(X, A) — H.(Y, B). O

Exercise 2.38. Show that the Bockstein homomorphism is natural in the following sense. Let
f be as in Proposition 2.37. Denote by f: A — B the restriction of f to A. Then the diagram

H.(X,A) —2 H,_,(A)

f*l lf*
H,(Y,B) —— H,_.(B)
commutes.

Two continuous maps f,g: (X, A) — (X, B) are called homotopic (as maps between pairs
of spaces), if there exists a continuous map h: (X x I, A x I) — (Y, B), such that h(-,0) = f
and h(-,1) = g. Notice that the homotopy & in this definition satisfies h(A x ) C B.

Two pairs (X, A) and (Y, B) are said to be homotopy equivalent, if there exist f: (X, A) —
(Y,B) and g: (Y,B) — (X, A) such that go f ~ idy and f o g ~ idy, where idx is viewed
as a map of pairs (X, A) — (X, A) (and similarly for idy). Just like in the situation of
Corollary 2.25, we have the following result.
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Proposition 2.39. If (X, A) and (Y, B) are homotopy equivalent, then Hy,(X, A) and Hy(Y, B)

are isomorphic for all k. 0

The following theorem, whose proof will be given in Section 2.14 below, turns out to be
a useful tool for the computations of relative homology groups. For the time being, we take
Theorem 2.40 as granted.

Theorem 2.40 (Excision). Assume the subspaces Z C A C X satisfy Z C Int A. Then the
inclusion (X \ Z, A\ Z) — (X, A) induces an isomorphism of relative homology groups:

H X\ Z, A\ Z) = H.(X, A).

2.7 The homology groups of the spheres

Theorem 2.41. The following holds:

Hy(S°%) = © if ’ and forn > 1 Hy(S™) = i 1
0 else; 0 else.
Proof. Denote
S" ={x = (z0,...,Tn41) € S" | 241 = 0},
Sntli={r € S" |2, >0}, S"i={z e S |2, <O}

Notice that S is homeomorphic to B, = {x € R"*? | |z| < 1,2, = 0}. In particular,
S is contractible.

Step 1. The map 6: Hy1(S™, S™) — H(S™) is an isomorphism provided k > 1.

By the long exact sequence of the pair (S, S™) we have

0= Hysr(S™Y) = Hi1 (™, 5™ 25 Hiy(S™) — Hiy(S™) = 0. (2.42)
Hence, 0 is an isomorphism.

Step 2. Define
Z ifn =0,

0 else.

Hy(S") := ker (Hy(S") = Ho(S"*1)) = {

Then §: Hy(S™*', S™) — Hy(S™) is an isomorphism.

Recall that for a connected space X a generator of Hy(X) is the class of any point. Hence,
if n > 0, then the homomorphism Hy(S™) — Hy(S™"') induced by the inclusion is in fact
an isomorphism. In particular, Hy(S™) = 0 in this case. However, if n = 0, S° consists of
two points (in particular, has two connected components), whereas S! is connected. Hence, the
homomorphism Hy(S°) — Hy(S!) is of the form

7* — 7, (a,b) = a+b
and its kernel is Hy(S°) = {(a, —a) | a € Z} = Z.

Furthermore, just like in the previous step, the long exact sequence of the pair (S™™!, S™)
yields

0= H,(S") = Hy(S™, 8™) =55 Ho(S™) — Ho(S™H).

In particular, ¢ is injective and, hence, an isomorphism onto its image in Hy(S™), which is the
kernel of Hy(S™) — Ho(S™™), that is Hy(S°).
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Step 3. Forall k > 0 and n > 0 the map
Jut Hipa (S™1) = Hia (8", 874 (2.43)

is an isomorphism.

For k > 0, this follows from the long exact sequence of the pair (S"+!, S7H1):

0= Hyp1 (ST = Hipr (S™Y) 2 Hypy (S7H,574Y) — Hi(571) =0

For &k = 0, we have

J/

0= Hy(STH) — Hy(S™Y) Lo Hy(S™, 574Y) = Ho(StH) — Ho(S™) = Z.

isomorphism

Hence, the third arrow represents the zero homomorphism and, therefore, j, is surjective. Since
Jx 18 injective, this is an isomorphism.

Step 4. For all k > 0 the inclusion p: (S™', S™) — (S™1, S"*1) induces the isomorphism
Pet Hir (S™1,8™) = Hy (™1, STHY). (2.44)
Indeed, denote
7 = {a: S %}

Then the homomorphism Hy,(S"*!, S") — Hyq(S™\ Z, ST\ Z) induced by the
inclusion (S"*! S") — (S"+1\ Z, S"*1\ Z) is an isomorphism, since the pairs (S, S")
and (S"t1\ Z, S"*1\ Z) are homotopy equivalent. Theorem 2.40 yields that the homomorphism
Hyy (S7HL ST — Hy (S Z, S\ Z) induced by the inclusion is also an isomorphism.
This proves (2.44).

Step 5. We prove this theorem

A combination of the previous steps yields the sequence of isomorphisms

Hia(S™) 2 Hipn (", 1) 2 Hypa(S74,8") > Hy(S"),

where ~

. Hy(S™), ifk=0

Ay(sm) = { ), ATR =0
This implies the statement of this theorem. U
Corollary 2.45. The n-sphere S™ is not contractible for all n > 0. 0J

For a general topological space X define also
f[O(X) = kere, where ¢: Hy(X) — Z, e[z nlxl} = Zni,
and H,(X) = H,(X) for k > 1. Using these notations we have

7 itk =0,n;

ﬁk(S”) - {0 else

for all n.
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2.8 The hairy ball theorem

Recall (cf. Definition 1.18) that the degree deg f of a continuous map f: S™ — S™ is an integer,
which is determined by the property

fea = (deg f)-a forall a € H,(S™).

Define the suspension X f : S*1 — S"Lof f via

(0,...,07$n+1) lf|$n+1| = ]_,
(tf(xTO> c ), ~’Bn+1> if |z, 4| <1,

Zf(fL'(), e ,$n+1) = {

where t = /1 — a2 ;.

Proposition 2.46. degX f = deg f.
Proof. By the proof of Theorem 2.41 we have the following commutative diagram

Hygt (S7™Y) 2y Hyoy (ST, 8141 2y o (S7,87) —s H,(S,)

Efx l S l by l I« l

Hoar(S™1) —2s H, (S, 571 Py (S 57) —2 s HL(S,).

Denoting o := § o p; ! o j,, we obtain

Yfa)=a o fioa(r) = ofl((degf) . a(a)) =(deg f)-a = degXf = degf.
OJ

Theorem 2.47. There is no continuous map f: S*" — R***1\ {0} such that f(x) L x holds
forall x € S*.

Proof. The proof consists of the following steps.

Step 1. Let
Sg: 8" — 5", (T, @1, .-y xy) = (=X, T1,y - ., Tp),

be the restriction of the reflection in the hyperplane {zo = 0}. Then deg sy = —1.
The sequence of isomorphisms

Hy(SY) 2 Hy(SY,8Y) s Hi(S,5%) —2 Hy(So)
shows that
o(t) = (sin 27t cos 27t)

is a generator of H,(S'). Since soc(t) = o(—t), we have s,[c] = —[o] and therefore the claim
of this step holds for n = 1.

If s is the reflection on S™, then Xs is the reflection on S™™!. The induction with respect
to n yields the proof for all n > 1.

Step 2. For the antipodal map A: S™ — S", A(x) = —x we have deg A = (—1)"1,

The antipodal map on S is the composition of n + 1 reflections.
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Step 3. If f: S™ — S™ is a continuous map without fixed points, then f ~ A.

Th
e map Pla.t) im tf(z)+ (t — 1)z
ST N (@) + (6 - Da]

is a well-defined homotopy between f and A.

Step 4. If f: S™ — S™ is a continuous map such that f(x) # —x for all x € S™, then f is
homotopic to the identity map.

f(x) # —r = Ao fhasno fixed points = Aof~A — AcAof~AcA
=  f~id
Step 5. We prove the hairy ball theorem.

Assume there exists a continuous map f: S?" — R?"™!\ {0} such that f(z) L x. By
renormalizing we can assume without loss of generality that f: S?*® — S?". The assumption
f(z) L x yields in particular that f has no fixed points. By Step 3, f is homotopic to A.

On the other hand, f is homotopic to ¢d by Step 4. This yields a contradiction since

A~ f~id = 1 =degid=degA=(—1)"""" = -1

This theorem is often informally formulated as follows.

Corollary 2.48. One can not comb a hairy ball flat without creating a cowlick. U

Remark 2.49. Each sphere of odd dimension 2n — 1 > 1 admits a continuous map f: S**~! —
R?" \ {0} such that f(z) L x holds for all z € S?"~!. Indeed,

st = {$ = ($0,IE17$2,$3, cee 7$2n—2,$2n—1) | Zlvf = 1}
f(ﬂf) = ($1, —Xo, T3, —T2, .-, Ton—1, —$2n—2)-

Proposition 2.50. Let [S™, S™] be the set of all homotopy classes of continuous maps S™ — S™,
where n > 1. The map

[S",S"| — Z, [f] — deg f (2.51)

is surjective.

Proof. If n = 1, for each k € Z we have an explicit continuous map f;.: S* — S! of degree k,
namely fi.(z) := 2*. If n = 2, we have deg X f, = deg fx = k. The induction with respect to n
finishes the proof. O

Remark 2.52. Tt can be shown that (2.51) is even bijective (Theorem of Hopf). Also, [S™, S"] is
a group and (2.51) is an isomorphism of groups.
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2.9 Group actions on the spheres

Let GG be a group. We say that G acts on a set X if a homomorphism p: G — Aut(X) is given,
where Aut(X) is the group of all bijective maps X — X. An action is called free whenever the
following holds:

Ve e X Stab, :={g€ G| p(9)(z) =z} = {e}.

If X is in addition a topological space, then we require also that for each g € G the map p(g) is
a homeomorphism.

Theorem 2.53. 7 /27 is the only non-trivial group that acts freely on S*".

Proof. Assume that G # {e} acts on S*" freely. Consider the map

d: G —{£1},  d(g) = deg(p(g)).

Here d takes values in {£1}, since each p(g) is a homeomorphism. Furthermore, d(gh) =
deg(p(g)p(h)) = d(g)d(h), that is d is a group homomorphism.
If g # e, then p(g) has no fixed points. By Steps 2 and 3 in the proof of Theorem 2.47, the

following holds: deg p(g) = deg A = —1, i.e., d has a trivial kernel and is surjective.
Clealy Z /27 acts freely on S*":

pe) =id, p(l) = A,
where A is the antipodal map. ([l

Remark 2.54. On the odd-dimensional spheres other non-trivial groups may act freely. For
example, U(1) := {2 € C| |z| =1} = 5! acts on

STl = L(2,...,2,) €C™| Z || = 1}
via the homomorphism

w = fu, fuw(z) = (wzg, ..., wzy,).

2.10 Homology groups of graphs

Definition 2.55. A (finite topological) graph is a pair (G, V'), where G is a Hausdorff space and
G D V is a finite subset. The elements of V' are called vertices of G. Besides, we require that
the following holds:

* G\ V consists of finitely many path components é;,...,é;. The closure ¢; of each
component é; is homeomorphic to the interval [0, 1] and is called an edge of G;

* ¢; \ é; consists of two different vertices.
The aim of this section is to prove the following result.
Theorem 2.56. The group H1(G) is free and finitely generated. Moreover, the following holds:
rk Hy(G) — 1k H1(G) = # vertices — # edges =: x(G).

The number x(QG) is called the Euler characteristic of G.
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The proof requires some notions and auxiliary claims that we consider first. The proof of
Theorem 2.56 can be found at the end of this section.

Definition 2.57. A subset A C B is called a deformation retract of B, if the following holds:
There exists a continuous map r: B — A, which is called a retraction, such that the following
holds:

ror=1idy and 1071 ~idp,

where 2: A C B is the inclusion.
It follows immediately from the above definition that the induced maps
1e: Hi(A) — H.(B) and r,: H.B) — H.(A)
are mutually inverse. In particular, both maps are isomorphisms.

Lemma 2.58. Let A be a deformation retract of B, where A C B C X. Then the inclusion
12 (X, A) = (X, B) induces an isomorphism

0 Ho(X,A) = H.(X,B).

Proof. The proof of this lemma hinges on the following algebraic fact.

Lemma 2.59 (“Five lemma”). Assume the horizontal sequences in the commutative diagram of
abelian groups

Ay > Aoy > A3 > Ay > A5

I Y Y

By > By > B3 > By > B5
are exact. Furthermore, assume that f, and f, are isomorphisms, fi is an epimorphism, and f
is a monomorphism. Then f5 is an isomorphism. 0

Consider the commutative diagram

N

Here the horizontal sequences are long exact sequences of the pairs (X, A) and (X, B). Furthermore,
the first two vertical arrows and the last two ones represent isomorphisms. The proof now
follows from the five lemma. 0J

From the long exact sequence of the pair ([0, 1],{0,1}) we obtain the following result.

Lemma 2.60. The following holds:

Z ifk=1,

(0, 1],{0,1}) = {0 ik 1

O
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Proposition 2.61. The inclusion 1;: (e;, 0e;) — (G, V) induces a monomorphism
1wt Hy(ej, 0e;) = Hi(G,V).

Moreover, the following holds:

77 ifk=1
Ho(G,V) = D ima,, = ’
G, V) @m”j {0 ifk> 1.

Proof. Let f;: [0,1] — e; be a homeomorphism, a; := f(3), and d; := f([4, 2]). Denote also
A=A{ay,...,ay;}and D = dy U---Ud;. Consider the commutative dlagram

Hi(dj, d; \ {a;}) 2 Hilejoe;\ {a;}) «2— Hyle;, 0¢;)

l l l

Hy(D,D\ A) —25 H(G.G\A) 2 H(G,V).

All four horizontal homomorphisms are in fact isomorphisms. Indeed, a; and a» are isomorphisms
by excision, 3; and 3, by Lemma 2.58.
Since

<

Hy(D,D\ A) = @Hk Sdi\ {a;}) @ k(ej, 0¢j),

we obtain the claim of this proposition. 0

Proof of Theorem 2.56. For the proof we need the following algebraic fact.

Lemma 2.62. Any subgroup of a free abelian group is also free. 0
The remaining part of the proof consists of the following three steps.

Step 1. H,(G) is free.
The long exact sequence of the pair (G, V') yields:

0= H\(G) = Hy(G,V) = Ho(V) = Ho(G) — 0. (2.63)

Hi(G,V)isfree = H,(G) is free.

Step 2. Let f: A — F be an epimorphism between two finitely generated free abelian groups.
Then
A =ker f & Ao,

where f: Ay — F is an isomorphism and ker f is free.

Let fi,..., f, be generators of F'. Choose by,...,b, € A such that f(b;) = f;. Since
ker f C A and A is free, ker A is also free. Pick generators aq, . .., a; of ker f. Then we have
A =1Zay,...,ab1,...b,]. Indeed, for an arbitrary element a € A we have

fla) e F = f(a) Zm]f]:a—ijb Ekerf:a—ZmJb—Zplaz

Moreover, the representation & = ), m;b; + > p;a; is unique.
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Step 3. We prove this theorem.

Without loss of generality we can assume that GG is path connected. Then (2.63) yields
0 — H\(G) = H\(G,V) — Hy(V) — 0,
ie., Hi(G,V) = Hy(G) & Hy(V). This yields in turn
#edges = rk H, (G, V) =tk Hy(G) + 1k Hy(V') = rk H,(G) + # vertices — 1.
O

Example 2.64. The circle G = ey U ey, V = {v1,v2}. We have x(G) =0 = rkH,(G) =

Example 2.65. The wedge product of two circles is a graph shown on Fig. 2.2. Since x(G) =
—1, we have vk H;(G) = 2.

eo e2

el e3

Figure 2.2: The wedge product of two circles.

Definition 2.66. A graph (G, V) is called planar, if there is an embedding of G into R?, that
is if G can be drawn on the plane such that edges are represented by simple continuous curves
that intersect only at the vertices.

Each connected planar graph decomposes R? into a finite number of bounded domains,
which are called faces, and an unbounded domain, which is also called a face. Moreover, each
bounded domain is homeomorphic to a disc (a theorem of Schoenflies).

Theorem 2.67 (Euler). For any planar connected graph G we have
# vertices — # edges + # faces = 2. (2.68)
Notice that the unbounded face also counts in (2.68).

Proof. By means of the stereographic projection we can view G as a subspace of S?. Notice
that the unbounded face together with the point at infinity is mapped to a face on S2.
Just like in the proof of Proposition 2.61 we obtain

Hy(S?,G)=7zF  and  Hp(S*,G)=0 forallk ¢ {0,2},
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where F' is the number of faces. The long homology sequence of the pair (G, V') yields
H,(G) = 0 and from the long homology sequence of the pair (52, G) we have

0 — Hy(S*) = Ho(S*,G) — Hi(G) — Hyi(5%) =0,
which yields
ZF 2 7.® Hi(G) = F =1+1k Hy(G) — # vertices + # edges

by Theorem 2.56. Since G is connected by the hypothesis, we have rk Hy(G) = 1 and
therefore (2.68) holds. ]

Exercise 2.69. Solve the “Three utilities problem”: Suppose there are three cottages on a plane
and each needs to be connected to the water, gas, and electricity companies. Without using a
third dimension or sending any of the connections through another company or cottage, is there
a way to make all nine connections without any of the lines crossing each other?

Hint: to obtain a solution consider the graph K 3:

Figure 2.3: Graph K3 3.

Assuming K3 3 is planar, show that the following holds:
(1) # faces < %# edges;
(i1) #edges < 2#-vertices — 4.

Deduce from the last property that K 5 is non-planar.

2.11 Homology groups of surfaces

2.11.1 The torus

The torus T? can be understood as a square R with opposite sides being glued as shown on
Fig 2.4.

Let f: R — T? be the quotient map. Then f(OR) consists of two circles A and B
intersecting at a point.

Theorem 2.70.
Z  fork=0,2;
Hy(T?) =< 7% fork=1;
0 else.
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Proof. The proof consists of the following three steps.
Step 1. The map f: (R,0R) — (T?, AU B) induces an isomorphism

fi: H(R,0R) — H.(T*, AUB).

Let m be the center of the square 12 and D a disc centered at m contained in the interior
of R. Just like in the proof of Proposition 2.61 one obtains that all horizontal arrows of the
commutative diagram

H,(R,0R) ——  Hi(R,R\{m}) +— Hy(D,D\ {m})

a | |#

Hy(T?, AU B) —— Hy(T%, T\ {f(m)}) +—— H(f(D), f(D)\{f(m)})

represent isomorphisms (to prove this one needs in particular that A U B is a deformation
retract of T2 \ {m}). Since the right vertical arrow represents an isomorphism, we obtain that
the leftmost vertical arrow represents an isomorphism too.

Step 2. If k > 1, then

Z  fork =2,

0 else.

Hy(T? AU B) = {

The statement of this step follows from the long exact sequence of the pair (R, OR) and the
previous step.

Step 3. We prove this theorem.

The non-trivial part of the long exact sequence of the pair (T?, A U B) has the following
form
0 — Hy(T?) — Hy(T% AU B) -5 Hy(AU B) — H;(T?) — 0,

where Hy(T? AU B) = Z and H,(A U B) = Z? by Example 2.65.
To determine ¢, consider the commutative diagram

Hy(R,0R) —— H(DR)

f*l lfi

Hy(T?, AU B) —— H,(AUB),

>

b

Figure 2.4: The torus as a square with opposite sides being glued.
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where f': OR — A U B is the restriction of f. The induced map f is trivial (Why?). Since f,
and 0’ are isomorphisms, ¢ must be trivial too. This yields

Hy(T?) 2 kerd = Hy(T?>, AUB) 2 Z  and  H,(T?) = H,(AUB) > 7"
This finishes the proof. O

In fact, tracing through the above proof we can work out the generators of H,(T?). Indeed,
it was shown that the inclusion A U B C T? induces an isomorphism H;(A U B) — H,(T?).
Hence, the circles A and B generate H,(T?). L11

2.11.2 The projective plane

The projective plane RIP? can be defined as a square R with the opposite sides being glued as
shown on Figure 2.5.

Figure 2.5: The real projective plane as a square with opposite sides being glued.

Let f: R — RP? be the quotient map. Then, unlike in the case of the torus, A := f(OR) is
a circle in RP?,

Theorem 2.71.
Z for k =0;
Hy(RP?) = { Z/27  for k = 1;
0 else.

Proof. Just like in the proof of Theorem 2.70 we obtain that
fo: H(R,0R) — H,(RP? A)

is an isomorphism. The non-trivial part of the long exact sequence of the pair (RP?, A) is of the
following form:

0 — Hy(RP?) — Hy(RP?, A) -5 Hi(A) = Hy(RP?) — 0.
To determine the Bockstein homomorphism d, consider the commutative diagram
Hy(R,0R) —X— H,(dR)
l |

Hy(RP?, A) —— H,(A).
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A short thought yields that f] is a multiplication by £2 (Why?), i.e., 0 is injective and H;(A)/im ¢ =

7,/27. Tn particular, Hy(RP?) = ker 6 = {0} and i, : H,(A)/im§ — H,(RP?)is an isomorphism

O

2.11.3 The Klein bottle

Just like torus and projective plane, the Klein bottle /' can be also defined as a square R with
glued opposite sides as shown on Figure 2.6.

Figure 2.6: The Klein bottle as a square with opposite sides being glued.

Theorem 2.72.
7 for k= 0;
Hy(K)=(Z®Z/2Z fork=1;
0 else.

The proof of this theorem is left as an exercise.

2.11.4 Connected sum of manifolds

Let me recall the definition of a manifold.

Definition 2.73. A (topological) manifold of dimension n is a Hausdorff space’ M such that
for each point m € M there exists a neighborhood, which is homeomorphic to an open subset
in R™.

Manifolds of dimension 1 are usually called curves and manifolds of dimension two surfaces.

Exercise 2.74. Show that for each o € R” and r > 0 the open ball B, (z,) = {z € R |
|z — 29| < r} is homeomorphic to R". Furthermore, using this show that each point of a
manifold has a neighborhood homeomorphic to R"”.

Example 2.75.

Tn addition, it is required that M satisfies the second countability axiom, i.e., M has at most countable basis
of its topology. This is not crucial for the arguments used below, hence I do not mention this explicitly in the
definition.
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* R™ is an n-manifold; More generally, any open subset of R” is an n-manifold;
e S™is an n-manifold;
* The torus, projective plane, and Klein bottle are surfaces;

Let M, and M, be two connected manifolds of dimension n. Choose m; € M; and
homeomorphisms ¢;: B;(0) — U; C M; such that ¢;(0) = m;. With the help of the
identification B;(0) \ {0} = S x (0,1), ¢; induces a homeomorphism S™ ! x (0,1) —
U\ {m;}.

Definition 2.76. The space
Ml#MQ = (Ml \ {ml} L M2 \ {mg})/ ~, where
o1(x, 1) ~ oz, 1 — 1), r€S" tandr € (0,1),

is called the connected sum of M, and M.

-~

M\{m,}

o~

M\{m,}

) 4
M, # M,
Figure 2.7: Connected sum of two surfaces.

Exercise 2.77. Show that M;# M, is a manifold of dimension n and does not depend on the
choices involved in the construction (meaning the following: For any other choice of points m;
and homeomorphisms ¢; the results of the above construction are homeomorphic).

2.11.5 Compact surfaces

Denote
So=5% L =T% N=T4T% .., X,=4#,T%
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Figure 2.8: >, from a decagon.

Proposition 2.78. The surface >5 can be constructed from the Decagon via gluing of sides as
indicated on Fig. 2.8.

Proof. First construct the “connected sum of squares” as shown on Figure 2.9. To obtain >
from this we still need to glue the opposite sides of the two “squares” as indicated on the picture.

Pick a segment connecting two vertices of the squares as shown on the Figure 2.9 (the
colored segment) and cut the “connected sum” along this segment. The result of this is a
decagon. This means that we can obtain Y, after gluing appropriate sides of this decagon. [

\
\

Figure 2.9: The connected sum of two tori represented by squares.

N\

Induction with respect to g yields the following.
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Corollary 2.79. For each g > 1 the surface ¥, can be constructed from (6g — 2)-gon Rg,_o
via gluing of sides. 0

Remark 2.80. The representation of X, in the above corollary is not optimal in the following
sense: ¥, can be obtained from a (2¢g+2)-gon via gluing of sides. For our purposes the existence
of some representation will suffice.

By the inspection of the construction of >, from Rs,_o just like in the proof of Step 3 of
Theorem 2.70, we obtain the following.

Proposition 2.81. If f: Rg,—2 — X4 denotes the quotient map, then the induced homomorphism

H1 ((9Rﬁg,2) — H1 (f(@Rﬁg,g)) is trivial. O
Theorem 2.82. We have
7 ifk=0,2;
Hy(Z,) = 7% ifk =1; (2.83)
0 else.

O

The proof of this theorem uses Proposition 2.81 and the argument is parallel to the one used
in the proof of Theorem 2.70. The details are left to the reader.
Denote also

Sy ==RP? S, =RP’#RP* und S, =S, #RP.

Just like in Theorem 2.82 one can show, that the homology groups of S, are given by

7 if £ = 0;
Hi(S,) = 7971 @ 7/27 ifk=1;
0 else.

In particular, the computations above yield the following.
Proposition 2.84. The surfaces
X0, DiyeeeyMgy-eay S1, S2,...,8g, ... (2.85)

are pairwise non-homeomorphic. 0

Theorem 2.86 (Classification of curves). Each connected curve (i.e., 1-manifold) is homeo-
morphic either to the interval (0, 1) or to the circle S™.

Proof. See [Mil65] or [GP74]. O

Theorem 2.87 (Classification of compact surfaces). Each compact connected surface is homeo-
morphic to ¥, or Sy for some g > 0, that is (2.85) is a complete list of all compact surfaces up
to homeomorphisms. 0]
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2.12 The Meyer-Vietoris sequence

Let A, B C X be two subsets. Consider the homomorphisms

i, H(ANB) = H,(A), j.: H(ANB) - H.(B),
koo Ho(A) = H.(X) and L: H.(B) = H.(X).

Furthermore, define

v: H(ANB) - H,(A) ® H.(B), ¢(x) = (ix(x),j«(x)) and

= (1
(B H*(A) ©® H*(B) — H*(X)7 ( ) — k*(u) _ l*(v) (2.88)

Theorem 2.89. If X = Int(A) U Int(B), then for all k € N there is a natural homomorphism
A: Hy(X)— Hp,_1(AN B)
such that the sequence
- = Hy(AN B) - Hy(A) & Hy(B) -5 Hy(X) 25 Hy ((ANB) > ... (2.90)

is exact. This sequence is also exact for H, whenever AN B + ().

We postpone the proof of this theorem till Section 2.14 below and take this result as granted
for the time being.

Example 2.91 (The spheres). Define

S" = {(xo,...,x) | Zx?zl},
A:=8"\{(0,...,0,)} 2R"*, B:=28"\{(0,...,0,-1)} ¥ R".

Since AN B = R™\ {0} and S"! is a deformation retract of R" \ {0}, we have the following
exact sequence: ) )
0— Hk(Sn) — Hk_l(Sn_l) — 0.

This yields immediately that the homology groups of the spheres are as described in Theorem 2.41

Example 2.92 (The torus). Let D; C Dy C Int(R) be two discs with the same center. Setting
A :=T?\ D; and B := D, the following holds:

» The wedge product of two circles (A U B in the notation of Subsection 2.11.1) is a
deformation retract of T2 \ Dy;

e St is the deformation retract of A N B.
Using these properties and the Mayer—Vietoris sequence, we have:
0~ Hy(T?) — Hy(S") <5 Hy(T*\ D) &0 — Hy(T%) — Hy(S") =0
Since ¢ is the zero homomorphism (why?), we obtain:
Hy(T?) =2 H (S')=7Z and H,(T? = H,(S'v S") = 7?

Exercise 2.93. Compute the homology groups of the projective plane and the Klein bottle using
the Meyer—Vietoris sequence.
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Definition 2.94. Let X and Y be two topological spaces with chosen points zo € X andyy € Y.
The space

is called the wedge product of (X, xy) and (Y, yo).

Proposition 2.95. If xq is a deformation retract of a neighborhood U C X and vy, is a
deformation retract of a neighborhood V- C Y, then

H(XVY) 2 H(X)® H(Y).

Proof. Set A= XUV and B =Y UU. Then UUV retracts onto the point [xo] = [yo] in X VY.
One obtains the claim of this proposition immediately from the Meyer—Vietoris sequence. [

Corollary 2.96. For alln > 1 we have

~ N N ] =
(s = {7 I

0 else.

2.13 Homology groups of a pair and a quotient

Let GG be an abelian group and K C H C G subgroups. Recall that this yields the following
exact sequence:
0—H/K—-G/K—G/H—0

For B C A C X, this yields the following exact sequence
0— S.(A,B) = S.(X,B) = S.(X,A) — 0.
By Theorem 2.33 we obtain the long exact sequence of the triple (X, A, B):
- —= H,(A,B) - H,(X,B) = H,(X,A) > H, 1(A,B) - ...

Theorem 2.97. Let A C X be a closed subset such that A is a deformation retract of a
neighborhood U O A. Then the quotient map q: (X, A) — (X/A, A/A) induces an isomorphism

G: Ho(X,A) = H(X/A AJA) = H,(X/A).

Proof. The proof consists of the following two steps.
Step 1. v.: H.(X,A) — H.(X,U) is an isomorphism.

Since A is a deformation retract of U, we have that the map H,.(A) — H.(U) induced by
the inclusion is an isomorphism. From the long exact sequence of the pair (U, A) we obtain that
H,.(U, A) is trivial. An application of the long exact sequence of the triple (X, U, A)

0= H,(U A) = Hy(X,A) = H,(X,U) = H,_1(U,A) =0

finishes the proof of this step.
Step 2. We prove this theorem.
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Consider the commutative diagram
Hk(X, A) —  Hp(X,U) — H, (X \A U\A)
Hiy(X/A AJA) —— Hk(X/A, U/A) — Hk(X/A \A/A, U/A\ A/A).

By Step 1, the two left horizontal arrows represent isomorphisms. The right horizontal arrows
also represent isomorphisms by excision. The right vertical arrow also represents an isomorphism,
since the restriction of ¢ to the complement of A is a homeomorphism. Hence, ¢. on the left is
also an isomorphism.

Finally, the long exact sequence of the pair (X, x), where 2 € X, shows that H,(X) and
H.(X/A, A/A) are isomorphic. O

2.14 Proof of the exactness of the Mayer—Vietoris sequence
and excision

LetU = {U;} be a family of subsets of X such that {Int(U,)} is a covering of X. Denote
SY(X) := {Z n;o; | Vi 35 suchthat imo; C Uj}.

Clearly, SY(X) is a subcomplex of S,(X). Denote by HY(X) the homology groups of this
complex. The main step in the proof of the excision theorem is the following.

Proposition 2.98. The inclusion 1: SY(X) — S.(X) is a chain homotopy equivalence. In
particular, H4(X) = H,(X).

{Chain homotopy equivalence is not yet defined. J

For the proof of this proposition we need some auxiliary claim and constructions. The proof
itself can be found on Page 39 below.

Let A = A(xzo, ..., ;) be asimplex in an Euclidean space V. For an arbitrary b € V' define
the cone of A by the formula

Cb(A) = A(b, oy - - - ,ZL’k). (299)

Geometrically C,(A) is the cone of A (at least in the case when b is not contained in the affine
subspace generated by x, . .., Ty).
The point

1
b=b(A) = —kHij

is called the barycenter of A. The barycentric subdivision Sd(A) is a chain in V, which is
defined recursively in k, namely:

Sd(A(zo)) = A(zo) if k=0,
SA(A) = Cya)(SA(0A)) if k > 0.

For example, the barycentric subdivision of the standard 2-simplex is shown on Fig. 2.10.
For an arbitrary subset A C R" the diameter of A is defined by

(2.100)

diam A := sup |z —y|.
T, yeA
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Xz

Xo
Figure 2.10: The barycentric subdivision of the standard 2-simplex.

Lemma 2.101. For each simplex A', which appears in the representation of SA(A) as a chain,
we have

k
diam A’ < )

Proof. The proof consists of the following two steps.

Step 1. For A = A(xy, ..., zx) we have

diam A. (2.102)

diam A = max |z; — ]
i.j

Pick x € Aandsety = > t;z; € A, where ) t; =1, t; € [0, 1]. We have

< max |z — .
J

(2.103)

This yields
lz —y| < max |z — x| < max |z — x5
Step 2. We prove this lemma.

We apply induction with respect to k. For & = 0 Inequality (2.102) clearly holds. Furthermore,
we assume that this inequality also holds for all (k — 1)-simplexes in V. Let A’ be a simplex,
which appears in the representation of Sd(A), that is A" = (b(A), Yo, - - ., Yr—1), where all y;
are contained in some face 0;A of A. By Step 1, we obtain

diam A’ < max{\yi -yl |b— yl|}
Furthermore, we have

lyi — y;] < diam A(yo, ..., Ye—1)

kE—1
< diam 0;A by the induction hypethesis
k—1
< diam A ;A CA
< P diam A since  — x/(x + 1) is increasing.
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It remains to show that the inequality

|b—yi| < diam A

k+1
also holds. Indeed,

1b—yi| < [b— ] for some j by (2.103)

1 1
= ’k—ﬂzxi_xj = ’k—HZ(ZEZ—Ij)

% 7

S k—_i_lmzaxlxl — iL'j‘

diam A.

<
—k+1

Here we have also used the fact that the second sum in the second line has at most £ non-trivial
summands. O

Let X be a convex subset of an Euclidean space and A, C R*! be the standard k-simplex.
A map f: Ay — X such that

is called an affine simplex in X. Clearly, any affine simplex A; — X in X is uniquely
determined by the images of the vertices. In particular, each affine simplex can be identified
with A(zo, ..., zx), where z; = f(e;) € X.

Denote by AS,(X) the free abelian group, which is generated by all affine k-simplexes.
Formula (2.8) defines the boundary map on AS,, that is (AS,,0) is a chain map. Besides,
define AS_1(X) := Z[@] and 0A(zy) = [@] for all 0-simplexes A(z).

Proposition 2.104. Map (2.100) together with SAd(D) := & determines a chain map Sd: AS, —
AS. with the following properties:

(i) Sd is chain homotopic to the identity homomorphism,

(ii) For each simplex A', which appears in Sd(A), we have diam A’ < ki+1 diam A.

Proof. The proof consists of the following three steps.

Step 1. For each b € X the homomorphism
Cb : ASk(X) — ASkH (X),

which is determined by (2.99) and C,(2) = {b}, is a chain homotopy between id and the trivial
homomorphism, that is

aCy, + Cy0 = id. (2.105)
The claim of this step follows from the following simple observation:
aCb(A(iL’o, . ,l'k)) = A(.CL'(), . ka) — 8Cb(8A(x0, . ,fﬂk))

Step 2. Sd is a chain homomorphism.
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Define additionally Sd(@) = @. To show that Sd is a chain homomorphism, observe first
that Sd = ¢d on AS_; and ASj and therefore we have

0oSd=Sdo-0 (2.106)
on AS_;. For k > 0 the proof of (2.106) is obtained by induction:

0SdA =0C,Sd oA

= Sd A — C,(0Sd 9A) (2.105)
= SdOA — Cy(Sd 0 0A) by the induction hypothesis
= Sd oA d*=0.

Step 3. Sd is chain homotopic to the identity homomorphism.

Define T': ASy — ASk4q recursively in k, namely
T(@) =0 and TA = Cb(A) (A - TOA)

The property
TO+0T =1d—Sd

holds clearly on AS_;. For k > 0 the proof goes just like above by the induction:

OTA=0C,(A—-TIA)

=A-TIAN—-C,(0A-0TIA) (2.105)
=A—-TOIA—Cy(OA — A +SdOA —THIA) by the induction hypothesis
—A-TOA—SAA (2.100).

To finish the proof of this proposition, it remains only to notice that (ii) follows immediately
from (2.100) and Lemma 2.101. 0

Proof of Proposition 2.98. The proof consists of the following four steps.

Step 1. Define
Sd: S.(X) = S.(X) by Sd(0) = 0x(Sd(AL))

and similarly also T. Then we have
Sded=005d and TO+ 0T =1d— Sd.

The proof is a simple exercise.

Step 2. (Lebegue’s lemma) Let V be an arbitrary open covering of a compact metric space
Y. There is a number ¢ = (V) with the following property: Each subset Z C Y such that
diam Z < ¢ is contained in some V; € V.

Indeed, by the compactness of Y we obtain that there is an open finite covering of Y by
balls B,,(y;) such that each ball By, (y;) is contained in some V; € V. Let ¢ be smaller than the
minimum of all r;.

Furthermore, for any two points 21, zo € Y such that dy (21, z2) < £ we have

3B, (yi) 2 21 = dy(22,y:) < dy(20,21) +dy (21, 4:) < e 41 <21

This shows that 2, € By, (y;) C V.
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Step 3. The following holds:
(i) SA™ is chain homotopic to the identity homomorphism for all m € N;

(ii) Forall o: Ay — X there exists some m € N such that SA™ (o) € C4(X).
Define

m—1
D,, = Z T o Sd'.
=0

The first claim follows from the following computation:

m—1 m—1
0Dy +Dy0=> (0TSd' +TSd'9) =Y (9T Sd' +T9Sd')
i=0 1=0

3
L

(id — Sd)Sd’ = id — Sd™.

o

The second claim follows from a combination of Step 2 and Proposition 2.104.

Step 4. For each o: Ay — X let m = m(c) € N be the minimal integer such that (ii) from
Step 3 above holds. Define

D: Sp(X) = Sp(X), Do = D)0
Then there exists a chain homomorphism p: S.(X) — SY(X) such that
DO+0D =1id—1p and pr=id, (2.107)

where 1. S4(X) — S.(X) is the inclusion.

Define p by the equality
0Do + Ddo = o — p(0) = p(o) =0 — Do — Ddo.
Using the equality 0D, ()0 + Do) (00) = 0 — Sd™) g, we obtain
p(0) = 8™ g + D,y (80) — D(00).

From the inequality m (o) > m(0;0), which is valid for all j € {0, ..., k}, we obtain

|
E

Dinio(07) = D(07) = 32 (=1 (Do (85) = D(y07))

<.
> |l
o

(-1 ) TSd(90) € CH(X).

j=0 i>m(9;0)

This yields that p(c) lies in CY(X) too, since Sd™ 7o € CY(X).
Besides, p is a chain homomorphism:

Opo=00—00Dco—0D0do = p(do).

The fact that p takes values in CY(X), yields that the first equation of (2.107) holds. One
obtains the second equation by observing that for all 0 € C%(X) we have m(o) = 0 =
Do =0 = p(o) = o. This finishes the proof of Step 4 and simultaneously also the proof of
this proposition, since (2.107) implies that 2, : HY(X) — H,(X) is an isomorphism. O]
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With this understood, we can give the proof of the excision theorem.

Proof of Theorem 2.40). The proof consists of the following two steps.

Step 1. For any subsets A, B C X such that X = IntA U IntB the inclusion (B, AN B) —
(X, A) induces an isomorphism

H,(B,AN B) = H.(X, A).

Set U = {A, B}. All maps, which appear in (2.107), preserve S,(A). This yields that the
inclusion

12 SY(X)/S,.(A) = S,.(X)/S,.(A)

induces an isomorphism on the homology groups, since for the induced maps D and p Relations (2.107)
are also satisfied.
Furthermore, we have

SY(X)/S.(A) = (S.(A) + 5.(B))/S.(A) = S.(B)/S.(AN B).
Moreover, this isomorphism is induced by the inclusion S, (B)/S.(AN B) — SY(X)/S.(A).
Step 2. The claim of Step 1 is equivalent to the claim of the excision theorem.
Setting
B:=X\Z and Z:=X)\B,
we have AN B = A\ Z. Moreover, the condition Z C Int(A) is equivalent to X = Int(A4) U
Int(B). O

Proposition 2.98 also allows us to prove the exactness of the Mayer—Vietoris sequence as
follows.

Proof of Theorem 2.89. Set U = {A,B}. It is easy to check that the sequence of chain
complexes

0= S.(ANB) %5 S.(A) @ S.(B) -5 SU(X) = S.(A) + S.(B) — 0

is exact, where” ¢(z) = (z,z) and 1 (u,v) = u — v, cf. (2.88). The long exact sequence of the
homology groups combined with Proposition 2.98 yield Mayer—Vietoris sequence (2.90). [J

The homomorphism A: Hy(X) — Hi_1(A N B), which appears in the Mayer—Vietoris
sequence, can be given explicitly. Namely, let z € Si(X) be an arbitrary chain. It follows from
the proof that there is a decomposition z = x + y, where x € S(A) and y € Sy(B). Besides,
Ox + dy = 0z = 0. Notice however, that neither  nor y must be a chain. Then we have
A([z]) = [0x] = —[0y]. Details are left to the reader.

The above implies in particular that A is natural in the following sense. Let X, A, B and
X', A', B' be as in Theorem 2.89. Furthermore, let f: X — X’ be a continuous map such that
f(A) C A’ and f(B) C B'. Then the diagram

Hy(ANB) —— Hy(A) @ Hy(B) —— Hy(X) —=> H,_1(ANB)
f{ f*l f*l f*l
Hy(A'NB') —— Hy(A) @ Hy(B) —— Hy(X') —2> H,_1(A'NB)

is commutative.
Sometimes the following relative version of the Mayer—Vietoris sequence is also useful.

2Here we omitted the natural inclusions in the notations.
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Proposition 2.108. Assume the following holds: X = IntAUIntB, X DY = IntC U IntD,
C C A, and D C B. Then the sequence

.+ — Hy(ANB,CND) 2 Hy(A, C)&H,(B, D) % Hy(X,Y) 2 H,_1(ANB,CND) = ...
is exact.

Proof. LetU = {A, B} and V = {C, D} be coverings of X and Y respectively. Consider the
commutative diagram

0 0 0
0 — Sp(C' N D) —~ 5 S(O)@S(D) — SYY) — 0
0 — Sk (AN B) — 5 SiA)@eS(B) = SY(X) —— 0

0 —— Sk (AN B, CND) —£= S,(A,C) & Si(B, D) —= SUY(X,Y) —— 0

0 0 0

Here S{"V(X,Y) = S¥(X)/SY(Y) by definition and the homomorphisms ¢ and ¢ in the last
row are induced by ¢ and ) in the middle raw.

Furthermore, the first two raws are exact. In particular, we have 1 c ¢ = 0 in the middle
raw. This equality must still hold in the third raw, that is the third raw is a chain complex. The
corresponding long exact sequence is of the following form

. — Hk(Zl) —_— Hk(ZQ) —_— Hk(Zg) —_— Hk_l(Zl) _ ...
where Z; stands for the complex of the jth raw. This yields
7 0 > O 7 Hk(Z3) 7 O > .

That is the homology groups of Z3 are trivial, so that the third raw is also exact. 0

2.A Poincaré conjectures
Conjecture 2.109 (Poincaré). A compact n-manifold that is homotopy equivalent to the n-
sphere is homeomorphic to the n-sphere.

Forn = 1 and n = 2 this conjecture follows from the classification theorems of Section 2.11.5.
Stephen Smale proved this conjecture for n > 5 in 1960. Later in 1982 Michael Freedman
proved also the conjecture in the case n = 4. Only in 2002 the case n = 3 was published by
Grigori Perelman.

Let M be a manifold of dimension n. An open subset U C M together with a homeomorphism
¢ between U and an open subset of R" is called a chart. A set

A={(U, i) |iel}

consisting of charts, which cover all of M, is called an atlas.
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Example 2.110. The sphere S™ has an atlas consisting of two charts. This was given in Example 2.91.

An atlas is called smooth, if each coordinates change map
piow; ' o;(UiNT;) = @i(UiNU;)

is smooth. The coordinates change maps are maps between open subsets of R" and smoothness
means that each component is differentiable to any order. A smooth manifold is a topological
manifold® together with a smooth atlas.

Let (M, A) and (N, B) be two smooth manifolds. A map f: M — N is said to be smooth,
if all coordinate representations of f, that is the maps

bjo fopi: R" — R™,

are smooth (these maps are possibly defined on open subsets of R” only). Here (V}, ;) is a
chart on N.

Exercise 2.111.

» Show that S™ has no atlas consisting of a single chart;
+ Construct a smooth atlas on T? and RP?.

Two manifolds M and N are called diffeomorphic, if there exists a bijection f: M — N,
so that both f and f~! are smooth. In this case f is called a diffeomorphism.

Theorem 2.112 (Milnor). There exist T-manifolds, which are homeomorphic but not diffeomorphic
to the 7-sphere.

It was shown later that there are exactly 28 smooth manifolds (up to a diffeomorphism),
which are homeomorphic to the 7-sphere.

Equivalently, one can reformulate the above theorem somewhat more intrinsically using
the notion of a smooth structure. Namely, two smooth atlases .4; and A, on M are called
equivalent, if A; U.A; is also a smooth atlas. A maximal atlas on M is called a smooth structure.
In other words, a smooth structure is an equivalence class of smooth atlases.

Proposition 2.113. Let M be a topological manifold. M admits at least two inequivalent
smooth structures if and only if there exists a smooth manifold N, which is homeomorphic but
not diffeomorphic to M.

Proof. Let A be a smooth atlas on M. Assume there exist a smooth manifold (V, B) and a
homeomorphism f: M — N, which is not a diffeomorphism. Define a new atlas 5’ on M by

B = {(f (Vi) o ) | (V. ) € B
The atlases A and B’ are not equivalent, since otherwise f would be a diffeomorphism.

If M admits two inequivalent smooth atlases .4 and A’, then idy,: (M, A) — (M, A")is a
homeomorphism, which is not a diffeomorphism. U

Remark 2.114. There are examples of (compact) topological manifolds, which do not admit any
smooth structure.

Conjecture 2.115 (“Smooth Poincaré conjecture”). The natural smooth structure on the 4-
sphere is unique.

It is not known up to now whether this conjecture is true or false. At the same time, it is
known that R* admits infinitely many (even uncountably many) smooth structures. Examples
of smooth 4-manifolds admitting several smooth structures are also known.

3Technically, certain axioms are also required to hold, but this will not be a concern for us.
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Chapter 3

CW complexes and cellular homology

3.1 Attaching topological spaces

Let X be a topological space. The cone of X is the space
CX =X x [0,1]/ ~, (.Tl,O)N(l'Q,O) Vxl,xgeX.

Exercise 3.1. Show that the tip of the cone {p} := [X x {0}] is a deformation retract of the
cone. In particular, cones are contractible.

Let X, Y be topological spaces suchthat X NY = @, A C X and f: A — Y a continuous
map. We say that the space

XUpY =(XUuyY)/~, where a~ f(a) Vae A

is obtained by attaching X to Y via f.

Some properties considered in the previous chapter can be elegantly expressed in terms of
the above attaching construction. For example, consider the space X U C A, where the attaching
map is the inclusion a — (a, 1). We have

H(XUCA) =2 H(XUCA,CA) by the LES of the pair (X UCA,CA)
~ H. (X UCA\ {p},CA\ {p}) by excision
~ H.(X,A) AC CA\{p} isadeform. retract.

This means that the relative homology groups can be represented as the absolute homology
groups of the space X U C'A. Here one does not need to impose any assumptions on A, cf.
Theorem 2.97.

Let p,: S ! — X, v € T, be a family of continuous maps. We say that the space
(X |_| Bnﬁ>/ ~, where y ~ ¢, (y) Vye€0B,,
vel

is obtained from X by attaching of n-cells and ®.,: B,,, — X||B,,/ ~ is called the
characteristic map. The restriction of ®., to the interior B, - of the ball is a homeomorphism
onto its image e, which is referred to as an n-cell.

Definition 3.2. A structure of a CW complex on a Hausdorff space X is a sequence of closed

subspaces
XcX'c---cX"C...

such that the following holds:
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1 X =U, X"
(ii) XY is a discrete space;
(iii) X™ is obtained from X! by attaching of n-cells;
(iv) A subset A C X is closed (open) in X if and only if A N X" is closed (open) in X".
The subspace X" is called the n-skeleton of X.
A CW structure is called finite if it consists of finitely many cells.

Proposition 3.3. Let X be a topological space equipped with a CW structure. The following
holds:

* X D Ais closed (open) < @;1(14) C B, is closed (open);
e For finite CW structures (iv) of the definition above holds automatically.

Proof. The continuity of @, yields immediately the proof of the first statement in one direction.
To show the other direction, assume that A N X! is closed. Then A N X™ is closed in X™ by
the definition of the quotient topology.

Assume A C X is closed. Since each X" is closed, the set X™ N A is also closed for any
CW complex. Thus, we only need to prove that for a finite CW complex X if A N X" is closed
for any n, then A is itself closed. Indeed, if the CW structure is finite, then A = U(A N e7) is
compact as a finite union of compact subsets. Since X is a Hausdorff space, A is closed. [

Example 3.4. A finite topological graph is a CW complex.

Example 3.5. Each compact surface admits a CW structure. This follows for example from
Corollary 2.79.

Example 3.6. The sphere S™ = B,,/0B,, has a CW structure, which consists of one 0-cell and
one n-cell:
XO — ... = Xn_l = {pt}7 X" = 9S" = {pt} U Bn,

where p: 0B,, — {pt} is necessarily the constant map.
Example 3.7. (Non-Example) Consider the space
X:=Jx,
neN

where X, is the circle in R? of radius 1/n centered at (0, 1/n). We define the topology on X
as the one inherited from R?. Then X \ {0} consists of infinitely many intervals, however this
is not a CW structure (Why?).

Example 3.8 (Real projective space).

RP" = the space of all lines in R through the origin

=57/ ~, where x ~ —x  Va € S",
=85"/~, where x ~ —x  Vx € 05",
=RP" ' uUe”

The attaching map ¢: S"~' — RP" ! is the quotient map (in particular, this is a 2-to-1 map).
This yields a finite CW structure on RP":

X"=RP"=cUe'U---Uem.
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Example 3.9 (Complex projective space).

CP" = {C-lines C C"*" through 0}

= (C"'\0)/ ~ (20,--+52n) ~ (A\20,...,A2,), A €CN\O,
= S/~ (20, -y 2n) ~ (Az0, ..., Azn), 2| =1, |A] =1,
= B,/ ~ 2~ N VY €0By, [N =1

To see the last equality, notice first that for any non-zero z, € C there exists a unique A € C
with [A\| = 1 and A\zy € R~q. Hence, for any (zq, 21, . . ., 2,) € S with 2y # 0 there exists a
unique A € C such that |[A\| = 1 and r := \zy € R,. Hence,

{(zo,zl,...,zn) € S* | 2 #O}/N & {(r,zl,...,zn) [|zP=1-7%re¢ (0,1]}
=~ B*"\ 0B*".

This yields in turn CP" = e*" U (9B*"/ ~ ) = ¢* U CP""". Moreover, the attaching map is
the projection S?*~* — CP" ! (the Hopf map). This yields a CW structure on CP":

CP'=c"Ue?u---uUe.

Example 3.10 (Quaternion-projective space). Replacing R or C by quaterions in the constructions
above, we obtain the quaternion-projective space:

HP" = (H""\ 0)/(H\0) =e’Ue'U---Ue™.

Proposition 3.11. We have

7 k=0,2...2n,

0 else

Z k=04,... .4
and Hk(]HHP’”)%{O else0’7 T (3.12)

H,,(CP") = {

Proof. By the induction on n we show that Hy(CP") are indeed given by (3.12). The proof for
HIP" can be obtained along similar lines.

For n = 0 we have CP’ = {pt} and therefore (3.12) holds in this case.

The long exact sequence of the pair (CP", CP" ) yields

oo = Hypy (CP",CP*Y) — Hi(CP" ') — H,(CP") — Hi(CP",CP* ') — ... (3.13)

We also have CP" /CP" ! = ¢?" /e = S,

Exercise 3.14. Show that CP" ! is a deformation retract of a neighborhood in CP". (Hint:
Show that CP" \ {[0 : ... : 0 : 1]} is the total space of a vector bundle, that is there is a
continuous map w: CP"\ {[0:...:0: 1]} — CP" ' such that each fiber of 7 is homeomorhic
to a complex vector space of dimension one.)

For k < 2n (3.13) yields H;,(CP") = H,(CP" ). For k = 2n we obtain
0 = Hy, (CP"™ 1) = Hyp,(CP") — Hy,(S*") — Hap 1 (CP" 1) =0,
that is H,,,(CP") = Z. O
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3.2 Operations on CW complexes

Product. If X =Uel andY = Uep' are CW complexes, then

XxY = U Ueg‘xegl.

k=mtn 7,8

This yields a C'W structure on X x Y, since B,, X B,, is homeomorphic to B, ,, (Why?).

Example 3.15. S' = ®Ue! = T? = S' x S' = "U(ejUel)Ue? = {pt} U(AU B) Udisc,
cf. Section 2.11.1.

Quotient. A subcomplex A of a CW complex X is a closed subset, which is a union of cells
in X. Under these circumstances (X, A) is called a CW pair.

The CW complex X /A consists of cells of X \ A and an additional 0-cell [A]. For an n
cell with an attaching map ¢, : S"~* — X! the corresponding attaching map is given by the
composition "1 — X7l — X7 /(XmTi 0 A).

Example 3.16. Consider the torus T? = ¢’ U (ej Uel)Ue? and set A = U (ejUel) = STV St
Then we have T? /A = ¢ U e? = S2.

Suspension. The space
SX = (X X I/X X {O})/X X {1} = ClX Ux CQX
is called the suspension of X. In particular, when X is a CW complex the suspension SX is

also a CW complex.
For example, we have S(S™) = S"*1.

Smash product. Let (X, () and (Y, 10) be pointed topological spaces. The wedge product
X V'Y can be identified with the subspace

XX{yQ}U{J]()}XYCXXY.

The space
XAY =XXY/XVY =X xY/(X x{yo} U{zo} xY)

is called the smash product of (X, x¢) and (Y, yo). If X and Y are CW complexes such that zg
and yg are 0 cells of X and Y respectively, then X A Y is a (pointed) CW complex.

Example 3.17. Consider the spheres as CW complexes as follows: S = ¢? U e" and S™ =
e’ Ue™. Then

Smx S"=eUemUe"Ue™ 5 LUemUe” = 8™V 9"
This yields S™ A S™ = ¥ U g™+ = §min,
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Reduced suspension. Let (X, z() be a pointed topological space. The space
X =X xI/(X x{0}UX x {1} U{zo} xI) =X AS"

is called the reduced suspension of X . For example, 35" = S™+l,

The following observation will be useful in the sequel. First notice that the (non-reduced)
suspension of the n-ball is clearly homeomorphic to the (n + 1)-ball. By collapsing an interval
on the boundary, we obtain a topological space, which is still homeomorphic to the (n+ 1)-ball,
that is X B,, = B, 1. This yields in turn the following: If X is a CW complex, then XX is a
CW complex too and each n-cell in X corresponds to an (n + 1)-cell in X

x=lJe = =sx=le™ (3.18)

n>0 vy n>0 ~

3.3 Homotopy extension property

Let X be a topological space and A C X. Recall that a continuous map r: X — A is called
a retraction if 7|4 = 7014 = id4. Also, A is called the deformation retract of X if idyx is
homotopic to a retraction r: X — A, cf. Definition 2.57.

Definition 3.19. We say that the pair (X, A) has the homotopy extension property (HEP for
short), if the following holds: If a continuous map f: X — Y and a homotopy h: A x I — Y
of f|a = fou4 are given, then there is a homotopy H: X x I — Y such that H < (14 X id) = h.

Lemma 3.20. A pair (X, A) has the HEP if and only if X x {0} U A x I C X x I admits a
retraction.

Proof. The following observation is useful for the proof: The data consisting of a continuous
map f: X — Y together with a homotopy of f o 2,4 is equivalent to a continuous map X X
{0JUAX I =Y.

If there exists a retraction r: X x I — X x {0} U A x I, then H := ho (r x id) is an
extension of h.

If (X, A) has the HEP, then for id: X x {0} UA x I — X x {0} U A x I there exists an
extension r: X x I — X x {0} U A x I, which is the required extension. O

Let X be a CW complex and Y a topological space. For the proof of the next proposition
we need the following observation: A continuous map f: X — Y is the same as the sequence
fn: X™ — Y of continuous maps such that f,|x» = f; provided £ < n. Indeed, given
a continuous map f: X — Y, the corresponding sequence is constructed simply by setting
fn = flxn. If a sequence f, is given, we can define amap f: X — Y by

f(z) = fulz) provided =€ X".

This map is continuous, since for each open subset U C Y the subset f~1(U) N X" = f1(U)
is open and therefore also the subset f~!(U) is open in X.

Proposition 3.21. If (X, A) is a CW pair, then X x {0} U A x I C X X [ is a deformation
retract. In particular, each CW pair has the HEP.
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The proof of this proposition is given after the proof of Lemma 3.22.

Consider [0, 00) = Ujen|i — 1,4] as a CW complex. The CW subcomplex

T =|JX" x[i,00) C X x [0,00)

is called the telescope of X.
Lemma 3.22. T is homotopy equivalent to X.

Proof. Since X is a deformation retract of X x [0, c0), it is enough to show that 7" is also a
deformation retract of X X [0, 00).

Set Y; := T'U (X X [i,00)). By Proposition 321, X* x [i,i + 1] U X x {i + 1} isa
deformation retract of X x [i, 4+ 1]. This yields that Y;; is a deformation retract of Y;. Denote
by h;; a homotopy between id and the retraction ¥; — Y; ;.

Define f;: X x [0,00) — T by

(hooi(,7) te 0,3,
hyat—20ro(x,T) te [%, %],
fi(x, ) = o
i iy © Tim1 © - - - 0 ro(@, T) tel—271—27"1,

\

where p;: [1— 55, 1 — 55| — [0, 1] is a homeomorphism, for example p;(t) = 271 — 21+ —2,
Then f, is amap X X [0,00) — T such that f;|xiy[,c) = id for t > 1 — 5. Moreover, f; is
continuous, since f; is continuous on each X* x [i,4 + 1]. This yields the claim. 0J

Proof of Proposition 3.21. Notice that there exists a retraction r: B, xI — B, x{0}U0B,, xI.
This can be obtained for example as the projection from the point (0,2) € B,, X R.

This yields a retraction 7, : X™ X I — X" x {0} U (X" 1 U A") x I, where A" := X" N A.
Indeed, X™ x [ is obtained from X" x {0} U (X"~! U A") x I by attaching of B,, x I along
B, x {0} U0B, x I.

Let h,,; be a homotopy between r,, and idxn . Just like in the proof of Lemma 3.22, the

composition of {h,,;} yields the required retraction. 0J 16

3.4 Cellular homology
Consider the sequence
o Hop (XM X I (e XYy e (XL XY L, (323)
where the homomorphisms d,, | are defined as the composition
Hyppr (X", X7) 20 1 (XY 2 H (X7, X

(these maps are part of the long exact sequence of the pair (X", X™) and (X", X"~1)). This
yields
dn ° dn—i—l = jn—l ° (571 © jn) ° 5n+1 = 07
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since d,, © j, = 0 as the composition of two homomorphisms in the long exact sequence of the
pair (X™, X" 1), Hence, (3.23) is a chain complex. The homology groups of (3.23) are called
the cellular homology groups of X.

Theorem 3.24. The cellular homology groups are isomorphic to the singular homology groups.
The proof of the above theorem requires certain auxiliary statements, which are proved first.

Definition 3.25. If X = X" for some n, then X is called finite dimensional. A minimal n such
that X = X" is called the dimension of X.

Lemma 3.26. Let (X, z,) be a family of pointed spaces such that each x,, is a deformation
retract of a neighborhood in X .. Then the following holds

1.(\ X.) = @ H.(X.),

where the isomorphism is induced by the inclusions 1,: X, — \/ X,.

Proof. This follows from Theorem 2.97:
P A.(Xo) = P Ho(Xo. {za}) = H, (WX, {z0})
~ [, (UXo/ U {zo}) = H. (\/ X,).

Lemma 3.27. For any CW complex X the following holds:

(a) Hy(X™ X" 1) is afree abelian group generated by the n cells of X for k = n and trivial
fork >0, k #n;

(b) Hp(X™) = 0fork > n.

Proof. Claim (a) follows from the following observations: X"~ ! C X" is a deformation retract
of a neighborhood and X"/ X™~! is the wedge product of n-spheres.
Claim (b) is left as an exercise. L]

Proof of Theorem 3.24. The proof consists of four steps.

Step 1. For any finite dimensional CW complex X such that X" = {pt} for some n € N we
have H,(X) = 0 for all k < n.

Consider the sequence of homomorphisms
Hy(X*) — Hy (XM — Hy(XM2) — ..

which are induced by the inclusions. The long exact sequence of the pair (X*tm+1 xktm)
yields that any homomorphism appearing in this sequence is surjective. This implies the claim
of this step.

Step 2. For any CW complex X such that X™ = {pt} for some n € N we have I:Ik(X) = 0 for
all k <n.

Draft 50 December 14, 2023



Algebraic topology

Set R := X" x [0,00) C T, where T is the telescope of X. Denote also Z := RU; X" x {i}.
Then Z/ R is homeomorphic to \/, X’. Using the previous step, we obtain H,(Z/R) = 0 for all
k < n. The long exact sequence of the pair (Z, R) yields H,(Z) = 0 for all k < n.

Furthermore, we have

T/Z = (T/uX' x{i})/R=(USX")/R=\/SX".

Moreover, the (n + 1) skeleton of ¥X* is a point, cf. (3.18). This yields H,(T/Z) = 0 for
k < n + 1. From the long exact sequence of the pair (7', Z) we obtain Hy(T') = 0 for k < n.
The claim of this step now follows from Lemma 3.22.

Step 3. The map Hy(X") — Hy(X) induced by the inclusion is an isomorphism for k < n and
an epimorphism for k = n.

This follows immediately from Step 2 by using the long exact sequence of the pair (X, X™).
Step 4. We prove this theorem.

By the long exact sequence of the pair (X", X"~2) we have

0= Hy (X"2) = H,_(X™Y) 2% H, (XL, X™2),

Since j,_1 is injective, we obtain ker d,, = ker(j,,_1 ° d,) = ker §,, = im j, = H,(X").
Since j, is injective, we have j,(im d,1) = im(j, © 0,+1) = imd, . This yields that j,
induces an isomorphism H,,(X")/imd,,1 = kerd,,/imd,, 1.
Furthermore, by the long exact sequence of the pair (X", X™) we obtain
Hypr (X7, X)) 250 (X)) — H (XY = 0.

In particular, we have H,(X™)/im§, ., = H,(X" ™). The claim of this theorem follows now
from the observation that H,,(X"™!) = H, (X) by Step 3. O

Corollary 3.28. Let k be the number of the n cells of some CW structure of X. Then H, (X)
has at most k generators. In particular, if there are no n cells, then H,(X) = 0. 0J

Theorem 3.29. Consider €’ es a generator of H,(X™, X"™1). The homomorphism d,, in (3.23)
is given by

dn(el) = dyuen ™, (3.30)
W

d.,, is the degree of the map

S del — Xt X”’l/(X"’1 \ eZ’l) =
Moreover, the sum in (3.30) is finite.
Proof. Consider the following commutative diagram

Ay

Ho(By,,0B,,) ——=— H,1(0B,,) y H,oy(S27Y)

I I~ o]

Hn(ananl) % ]:-]n_1<anl) 9= y I:In_l(anl/an2)

x ljnfl l%

H, . ()(n—l7 Xn_2> = H, . (Xn_l/Xn_2, Xn_Q/Xn_Q),
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where the following notations are used:

* &, is the characteristic map of e.;

e ¢, 0B, — X" !is the attaching map of e;

o q: X"t — X1 /X"2 s the projection;

o g XPH/X2 o X /(Xh\ entt) =2 S s the projection;

* Ai=gq,oq0p,. i

The generator e, € H,(X™, X" 1) is ®..,.00~*(a), where a is the generator of H,,_1(0B,, ).
The commutativity of the diagram yields the equality

dyy@ = qui(dn(ey)) = Asa = (deg A)a.

Here the first equality follows from the following observation: g,.. maps 62*1 to a and vanishes
on all other generators. This yields (3.30).

It remains to prove that (3.30) is a finite sum. This will clearly follow if we can show that
any compact set in X intersects non-trivially only a finite number of cells. To this end, assume
there is a compact set K C X intersecting infinitely many cells. Then there is an infinite set
K’ = {x1,29,...} C K such that no two points in K" lie in the same cell.

I claim that K is closed. Indeed, this claim can be proved by induction. Thus, let us assume
that K/ NX""! is closed. If e, is an n-cell, then we have ern K = oelN K'U enn K'. The first
of those sets is closed by assumption, the second one contains at most one point and therefore
is closed too. Notice that K is therefore compact as a closed subset of a compact set.

A similar argument yields in fact that any subset of K" is in fact closed. But this implies that
K" is discrete and therefore must be finite. This contradiction finishes the proof of finiteness
of (3.30). O

Example 3.31. (Homology groups of real projective spaces) We begin with some observations.
A map f: 8"V S" — S™ can be understood as a pair (fi, f2) of maps S — S™. Then for
the induced map we have f,(z,y) = fi.z + fa.y (this follows from the fact that the projection
S™ 118" — §™ Vv S™ induces an isomorphism on H,).

Another observation is as follows. Let F': S™ — S™ VV S™ be a map with the property: F'
maps S’} on one copy of S™ and S” on the other one (the image of the equator must be the point
in S™ v S™). Then we have F.a = (fi.a, f-.a), where fi: S%/0S} — S™ is defined as the
restriction of F'.

Furthermore, let us proceed to the computation of the homology groups of RP". We know
from Example 3.8 that

RP" = RP" ' Ue”,

where the attaching map ¢ is the projection S*~! — RP"'. Consider the commutative diagram

g1 S RP™!

| |

Sn—l/sn—? SN ]R]P)n—l/RIP;n—Q

«| B
grty gt L gnet,

Here the components (1)1, 15) of 1 satisfy the relation ¢, = 11 o A, where A is the antipodal
map. By the construction of cells in RP", we can assume that ), is the identity map.
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The map A: S"~! — S™~1 (the diagonal in the above diagram) induces A,. We have
Aca=a+ A= (14 (-1)")a, a€ H, (S"™)

thatis deg A = 1+ (—1)".
This yields that (3.23) for RPP" has the following form:

0272272 %722 ... 572%72 50 if 7 is even,
0572272272 % .. 572 %750 if 7 is odd.

This implies in turn that the homology groups of RP" are given by

V/ fork =0 and k = n provided n is odd;
Hy(RP") =2 { Z/27Z for k odd, k < n;
0 else.

3.5 The degree of a map revisited

Theorem 3.29 reduces the problem of computing cellular complexes to that of computing
degrees of maps between spheres. This is already an enormous simplification, however it turns
out that the latter problem can be completely solved in elementary terms. The aim of this section
is to sketch a receipy for computations of degrees.

The following theorem, which we take as granted, shows that the task may be reduced to
the computation of degrees of smooth maps.

Theorem 3.32 ([BT82, Prop.17.8]). Each homotopy class of continuous maps S™ — S"
contains a smooth representative. 0

Thus assume that g: S™ — S™ is a smooth (or C') map. Pick a point y € S™ distinct from
the north pole and assume that g~*(y) does not contain the north pole (the north pole is not
really a distinguished point on the sphere, this choice is for the convenience of exposition only).
By using the stereographic projection, we can think of g as a smooth map from R" into itself.
We say that y is a regular value of g if for any p € g~'(y) we have det D,g # 0, where D,g
is the differential of g (the Jacobi matrix) at p. We shall show below that the preimage of a
regular value consists of finitely many points, say f~(y) = {p1, ..., pr}. To each point p; we
can associate a sign as follows:

e(p;) = signdet D, g.
With these preliminaries at hand we can state the main theorem of this section.

Theorem 3.33. Ify is a regular value of a smooth map g: S™ — S", then we have

k

degg= Y clp)=> ().

pEf~1(y) J=1

Sketch of proof. 1t is useful to recall first that a smooth map f: B" — B" is called a diffeo-
morphism if it is bijective and f ~1 is also smooth. In this case, det D f vanishes nowhere and,
hence, must be either positive or negative everywhere. We say that f is orientation-preserving
if det D f > 0 and orientation-reversing if det D f < 0.
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Step 1. Let f: B™ — B" be a diffeomorphism such that f(0B"™) C 0B". Define a continuous
map F: S™ — S™ by the diagram

wl lw
S" = Br/9B" — "= Bn/OB",

where T is the quotient map. Then

+1 if f is orientation-preserving,
deg F' = e ,
—1 if f is orientation-reversing.

Without loss of generality we can assume that f(0) = 0. If (r,w) are polar coordinates on
R" (so that w € S™7!), we extend f to a map R® — R by setting f(r,w) = (r, f(w)) for
r > 1. Consider the map

gy {0 it ©.1]
YU T\ Doflx)  ift=o0.

Using the fact that f(x) = 04 Dy f(z) +O(|z|?), it is easy to check that / is continous at ¢ = 0,
hence a homotopy between f and D f.

Exercise 3.34. Let LL R™ — R"™ be a linear map. Extend L to a map L: S — S™ where
S" = R™U {oo} and L(oc0) = oo. Show that deg L = sign det L.

To finish the proof of this step it remains to notice that
deg F' = degf = degﬁ(;" =signdet Dy f = £1,

where f: S™ — S™ is the extension of f.
Step 2. We prove this theorem.

Let y be a regular value of f. If p € f~*(y), then there exists a neighbourhood U, of p and
a neighbourhood V' = V), of y such that f: U, — V, is a diffeomorphism. In particular, f~*(y)
is discrete.

Furthermore, f~!(y) is closed as the preimage of a closed subset, hence also compact as a
closed subset of a compact space. It follows that f~!(y) is in fact finite, because any compact
discrete set must be finite.

Denote f~'(y) = {p1,....o}, V = Vp, N--- NV, and U; := U,, N f~(V) so that
f: U; = V is adiffeomorphism for each j. We can also assume that V" is homeomorphic to B"
(and, hence, U; = B") and f(0U;) C dV.

Furthrmore, by collapsing 5™ \ L;U; and S™ \ V' to points, we obtain the diagram

ﬂl lw

Here we think of a map \/ ;5™ — 5" simply as a k-tuple of maps S™ — 5™ and each component
g; can be obtained from f by collapsing the complement of U; to a point.
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It should be clear that .. : H,(S™) — H,(\/; S7') sends a generator a to a; +- - - +aj, where
a; is a generator of H,(S7). Notice also that w.: H,(S™) — H,(S,) is the identity map. It
follows that deg f = deg g; + - - - + deg g,,. By applying the previous step, we finish the proof
of this theorem. UJ

The following theorem shows that for any smooth map almost any value is in fact regular.
In particular, the set of regular values is non-empty and it is always possible to compute the
degree of a smooth map by counting points with appropriate signs.

Theorem 3.35 (Sard). For any smooth map the complement of the set of regular values is of
measure zero. U

An interested reader may find a proof of Sard’s theorem in [BTO03, 9.4] or [Mil65, §3].

3.6 The Euler characteristics

For any topological space X we set
bk(X) =1k Hk<X) S ZZO U {OO}

This is called the £th Betti number of X.
Assume that all Betti numbers of X are finite and only finitely many are non-zero. Under
these circumstances the integer

X(X) =) (=)' b (X)

k

is called the Euler characteristic of X. For example, by Corollary 3.28 the Euler characteristic
of a finite CW complex is well defined.

Theorem 3.36. For a finite CW complex X we have

n

where c,, is the number of n-cells of X.

Proof. First notice that by Step 2 in the proof of Theorem 2.56 we obtain the following fact:
If0 - A — B — C — 0is an exact sequence of finitely generated abelian groups, then
tk B=rkA+rkC.
Let
0—>C’nd—”>0n,1—>---—>01—>00—>0

be Complex (3.23) for X. Denote

Zk = ker dk, Bk = imdk+1, and Hk = Zk/Bk

We have
0— B, — 72, — H,— 0 1s exact — rk 7, = vk By, + rk Hy;
0—~2, —>Cy— Bi_1—0 1s exact - tkCp =1k Z, + 1k By_;.

Hence, we obtain: tk Cj, = tk By + tk By_1 + 1k H, = Y (=1)"rkCy = > (—1)*rk Hj.
U
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This theorem generalizes Theorem 2.56 for arbitrary dimensions.

Remark 3.37 (Another proof of Theorem 2.67). A planar graph yields a CW structure on S? =
R? U {oo}. By Theorem 3.36 we have

#vertices — #edges + #faces = y(S?) = 2.
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The fundamental group

4.1 Basic constructions

The following terminology will be useful in the sequel.

Definition 4.1. For A C X we say that two continuous maps of pairs fo, f1: (X, A) — (Y, B)
are homotopic relative to A, if there exists a continuous map of pairs h: (X xI, AxI) — (Y, B)
such that

h‘Xx{O} = fo and h}Xx{l} = fi.
To elaborate, the above definition means that A is a homotopy between f; and f; such that

h(a,t) € B foralla € Aandallt € I.

In this case we write
fo~ firel A

In the particular case A = {z¢}, B = {yo} we write simply f, ~ f; rel zy. This means, that
there is a homotopy h between f; and f1, such that h(xg,t) = yo forall t € I.

Let X be a topological space. For two continuous paths u,v: I — X such that u(1) = v(0)
define the concatenation (product) by the formula

uxv(t):= {ugz) ) iort = [(1)’ 3)
v(2t — ort € [3,1].

Pick any basepoint 2y and denote
Q(X, zo) := {u: I — X is continuous | u(0) = zy = u(1) }.

Elements of (2(X, zg) are called loops in X based at z5. Two loops uy and u; are said to be
equivalent (ug ~ uy), if ug and u; are homotopic relative to the basepoint. Define

m (X, zo) := QX x0)/ ~ .

The above concatenation operation yields a well-defined map *: Q(X, zy) x Q(X,zg) —
Q(X, ). Since

ug ~ uq and vy ~ vy — Ug * Vg ~ U * V1,
we obtain a well-defined map

(X, o) X m (X, x0) = m (X, 20), [u] - [v] = [u*v]. 4.2)

57



Algebraic topology

Theorem 4.3. 71 (X, xg) is a group with respect to the product given by (4.2).

Proof. The proof consists of the following steps.

Step 1. The constant loop c(t) = x is the identity element in m (X, xy), that is for any u €
Q(X, zg) we have u x ¢ ~ u and ¢ * u ~ u.

A homotopy between u * ¢ and u can be constructed explicitly, namely
2t/(1 if t € [0, 1£5],
ey = {1C0+ ) e 0,25
o ift € [?, 1} .
A homotopy between c * u and u can be given by a similar formula.

Step 2. For u € Q(X,xg) define u € Q(X,xg) by u(t) = u(l —t). The map u — u yields a
well-defined map w1 (X, xo) — (X, xo) such that [u] - [a] = [c] = [@] - [u].

We have to show that u * @ is homotopic to c. The required homotopy is given again by the
following explicit formula:

ht.s) = {u(2t(1 —5)) ift € [0, ?,

Step 3. For any u,v,w € Q(X, xo) we have (uxv)*xw ~ ux (v*w). In particular, the product
on (X, zy) is associative.

Again, one can construct the explicit homotopy as follows:

u(ﬁ—js) ift € [0, =],
h(t,s) == Qo(dt —1—s) ifte [, 22,
w(l—42)  ifte [2e 1]

Finally, a combination of Steps 1-3 yields that m;(X, x() is a group. Indeed, the last step
yields associativity, the first one existence of the identity element, and the second one the
existence of the inverse. U

It is worthwhile to note, that the proof of the above theorem yields an explicit expression
for the inverse element of [u] € (X, x(), namely

Definition 4.4. The group (X, ) is called the fundamental group of X (relative to the
basepoint x).

Example 4.5. If X is contractible, then any loop is homotopic to the constant one. In other
words, m1 (X, xo) = {1} for any basepoint z,. For example, 7 (R", zo) = {1}.

It is natural to ask whether the fundamental group depends on the basepoint. An answer to
this question is given by the following result.

Proposition 4.6. If X is path connected, then w1 (X, zo) and (X, x1) are isomorphic for any
o, 1 € X.
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Proof. Pick a curve w connecting zy and x;. Define the map
P, m(X,x0) = m (X, 21) P, ([u]) = [@ * u * w].
By the proof of Theorem 4.3 we have

Py([u][v]) = [@xusvsw] =[0xux(wxd)xvkw] = [(Dkuxw)x(0xv*w)]

= Pu(lu]) - Pu([v]).

Hence, P, is a group homomorphism.
Denoting by Py the corresponding homomorphism 7 (X, z1) — 7 (X, ), we obtain

Py oPy([u]) = [wx (0*u*w)*w] = [(w=d)*ux* (w*w)]| = [u].

Hence, Py o P, = id. A similar argument shows that P, o P; = id. In other words, P, is an
isomorphism whose inverse is FPy. UJ

Thus, if X is path connected, the isomorphism class of the fundamental group is independent
of the basepoint. Somewhat loosely speaking, in this case one usually drops the basepoint from
the notation of the fundamental group and calls this “the fundamental group of X.

Proposition 4.7. Any continuous map f: (X, zo) — (Y, yo) induces the group homomorphism

form(X,zo) > m(Y,n),  fulu] = [fou]
with the following properties:
(i) id, = id;
(ii) (go f)s=guo fus

(iii) f ~grelzy =  fo= g

(iv) (X,x0) and (Y, yo) are homotopy equivalent —> (X, o) = m1(Y, o).
U

Just like in the case of homology groups, Properties (i) and (ii) mean that the fundamental
group is functorial. In (iv) X and Y are meant to be homotopy equivalent as pointed topological
spaces. The proof is left as an exercise to the reader.

Notice also that the first two properties of the above theorem imply that f, is an isomorphism
provided f is a homeomorphism. In other words, the fundamental group is an invariant of
(pointed) topological spaces (more precisely, the isomorphism class of the fundamental group
is an invariant). Notice also, that nevertheless, it may happen that f is injective and f, is not.
Likewise, f may be surjective and f, may fail to be surjective.

We finish this section by the following elementary fact.

Theorem 4.8. For any two pointed topological spaces (X, x¢) and (Y, yo) we have a natural
isomorphism
™ (X X Y7 (:COJ yO)) =m (X7 :CO) X T (Y7 yO)

Proof. The proof follows immediately from the following elementary observations:

« QX XY, (z0,90)) = QUX, x0) x QAY, )3
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« QX XY, (zo,%)) > (u,v) > (ug,v1) rel (zo,50) <= u =~ ujrelzg and v ~
vy rel zy.

These two observations imply that the natural map [(u, v)] — ([u], [v]) is an isomorphism. [
The reader may suspect that the fundamental group is intimately related to the first homology
group, since, after all, both are constructed starting from continuous maps I — X. This is true

indeed and the precise relation is known as the Hurewicz homomorphism, which is described
below.

Theorem 4.9 (Hurewicz homomorphism). Let X be a path-connected topological space. The
map
Q(X, z0) = S1(X), U u

induces a well-defined homomorphism (the Hurewicz homomorphism)
h:m (X, xo) = Hi(X)

with the following properties: h is surjective and ker h = |7y, m1|, where we abbreviated 7, :=
m (X, xo) for brevity. In particular, H,(X) is the abelianization of 7y, that is 7 /[m, m] =
Hi(X). O

The proof of this theorem can be found for example in [Hat02, Thm. 2A.1].

4.2 Coverings

It is not easy to compute the fundamental group of a topological space just from the definition.

For example, even for the very simple topological space S! it is not so clear what is its fundamental

group. However, a loop in X can (and should) be viewed as a continuous map S! — X. Since
we are working in the category of pointed spaces, we require also u(1) = x,, where S! is
thought of as the set of complex numbers of absolute value 1. In any case, if X = S, we have
a well-defined map

deg: m(S') = Z deglu] = degu,

where deg u is the degree of « in the sense of Definition 1.18. We already know that this map
is surjective and we shall show below that this is in fact an isomorphism. However, the proof of
this fact requires the notion of a covering, which we consider next.

Definition 4.10. A covering of a topological space X consists of a topological space Y and a
map p: Y — X with the following property: For any z € X there exists a neigbourhood U > =
such that

p H(U) = |_| Vy and p| :V, — U is ahomeomorphism 4.11)

yep~(x) g
foreachy € p~(x).

We always assume that X and Y are (path)-connected. Otherwise we can consider coverings
of connected components individually.

Notice that the definition yields that each fiber p~! () is a discrete set, since each V, contains
a unique point from p~!(x), namely y. If this set is finite for any x € X, then #p~'(x) is
constant over U. Hence, z — #pfl(x) is a locally constant function and, therefore, is constant.
Denoting this common value by n, we say that Y is an n-sheeted covering of X.
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Example 4.12.

(i) The map exp: R — S1, exp(x) = €™ satisfies (4.11) demonstrating that R is a covering
of S*. Furthermore, p~'(1) = Z and for any U G S* we have

exp HU) = |_| Vi such that exp: V; = U is a homeomorphism.
i€z

(ii) Consider the map py: S' — S, po(2) := 22. The preimage of each point consists of
exactly two points, which differ by the sign. Furthermore, for U = {z € S! | -5 <
argz < 5} we have

pH(U) = ViUV where V, := { — % <argz < %} and V_ := —V,.

This demonstrates that any point in U has a neighbourhood such that (4.11) holds. It is
then easy to see that in fact any point in S* has this property so that S* is a 2-sheeted
(=double) covering of itself.

Moreover, it is clear that for any n € N the map p,,: S* — S, p,(2) = 2" satisfies (4.11).
Thus, S* is also an n—sheeted covering of itself.

(iii) Consider the natural projection 7: S™ — RP", x — 7(x) = R-x. Forany V C S™ we
have 7! (7(V)) = VU(—V). Hence, for any p € RP" we can pick a point p; € 7~ (p)
and a small neighbourhood V. of p, such that

~ U)=V,uV_, where U := 7(V,)and V_ := — V.

Moreover, in this case 7: V. — U is a homeomorphism so that S is a double covering
of RP".

Notice that the natural projection 7: R"™ \ {0} — RP" is not a covering, since, for
example, the fibers of this map are not discrete. Nor is the map p,,: C — C a covering for

n # 1, since #p,, (1) = n and #p, ' (0) = 1.
The following terminology will be useful in the sequel.

Definition 4.13. A map f: Z — Yissaidtobealiftof f: 7 — X ifpof: f.
Theorem 4.14. Let p: Y — X be a covering.

(i) For any pathw: I — X starting at some xo € X and any yo € p~—'(x0) there is a unique
liftu: [ — 'Y starting at .

(ii) For each homotopy h: I x I — X such that h(0,s) = g for all s € I there is a unique
lift h: I x I =Y such that h(0,s) = yo forall s € I.

Proof. Since I is compact, there exists a partition tg = 0 < t; < --- < t,,_1 < t, = 1 with the
following property: For each k£ € Ny, £ < n — 1 there exists U, C X such that

@) u([tr, te1]) C Uss

(b) p~1(Uy) = U;V; and p: Vi; — Uy, is a homeomorphism.
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We construct a lift of « by the induction on k. The initial step proceeds as follows. Since
zo = u(0) € U, there exists some V;; such that y, € Vp,;. Hence, using the fact that p: V;; —
Up is a homeomorphism, for ¢ € [0, ¢;] we define

_ -1
i(t) = ol ou )
Furthermore, suppose that @: [0,%;] — Y has been constructed. Since u(ty) € Uy, there

exists some j = j(k) such that @(t;) € Vj;. By (a) combined with the fact that p: Vi; — Uy is
a homeomorphism, we obtain an extension of @ to [ty, tx.1] by setting

~ -1
u(t> - p‘Vk]’ ou <t>’ fort € [tk7 tk-l—d'

This finishes the proof of the existence of .
To prove the uniqueness, assume that « and « are two lifts of u. Denote

T=sup{rel | a=don[0,7]}.

]

f 7 = 1 we are done, otherwise there exists a unique £ < n — 1 such that 7 € [y, tx41). Since
u(ty) = G(tx), we must have

a(t) =p|,, cu(t)=a(t)  forallt € [ty trs]

contradicting the definition of 7. This contradiction finishes the proof of (i). The proof of (ii) is
similar and is left to the reader. 0

Corollary 4.15. Ifp: Y — X is a covering and p(yo) = w0, then p,: (Y, yo) — w1 (X, x0) is
injective. Moreover,
Imp, = {u e QX,z0) | @€ QY,y0)}

Proof. Assume v € Q(Y,yo) represents an element in ker p,. This means that v = po v is
homotopic to the constant path zy. If h is a homotopy between u and z, let h be the lift
provided by Theorem 4.14, (ii). Since h(1,s) = z,, we have h(1,s) € p~'(x). By recalling
that p~' () is discrete, we obtain that the map s — h(1, s) is constant, since this is a continuous
map. Furthermore, by the uniqueness of the lift we have

i =v = h(-,0) — h(1,0) =v(1) = yo — h(l,s) =yo Vse L.

Hence, h is a homotopy between v and the constant loop so that ker p, is trivial indeed.
Furthermore, if [u] € Im p,, then there exists some v € Q(Y y,) such that pov is homotopic
to u. Arguing just like above, we obtain a homotopy h between the lift @ starting at ¢y in Y and
the lift of p o v, that is v. Moreover, h(1, s) is constant, hence h(1,s) = h(1,1) = v(1) = yp.
Hence, (1) = h(1,0) = yq, that is 7 is a loop based at ;. O

Corollary 4.16. The fundamental group of the circle is infinite cyclic, that is m(S*,1) = Z.

Proof. Recall that the circle S* is covered by R, see Example 4.12, (i). Hence, any loop u in S*
based at 1 admits a lift w: [ — R starting at the origin. Consider the map

e: QSH1) = p (1) =Z, u— a(l).
Since R is path-connected, this map is surjective.
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By the proof of Corollary 4.15, we obtain that if « is homotopic to v, then @(1) = o(1).
Hence, the map e yields a well-defined surjective map (still denoted by the same letter)

e:m(S'1) = Z, u— a(l).

In fact, e is a group homomorphism. To see this, notice that if u,v € Q(S L 1), then the lift
of u x v starting at the origin is the curve

so that e(u x v) = e(u) + e(v).

Furthermore, if [u] € ker e, then the lift @ is a loop in R. Since R is contractible, we have
] =0 = [u] = exp,[u] = 0. Hence, e is injective. However we have seen above that e is
also surjective. Thus, e is an isomorphism. 0

4.3 Uniqueness of coverings

In this section I show that a covering p: Y — X is uniquely determined (in a suitable sense)
by the image of the fundamental group of Y in the fundamental group of X. To this end, the
following will be useful.

Lemma 4.17. Let p: (Y,yo) — (X, x0) be a covering, where both X and Y are connected.
For any continuous map f: (Z,zy) — (X, xo), where Z is path-connected and locally path-
connected the following holds:

= llft fi (Z, Zo) — (Yv, y0> <~ f* (71'1(2, Zo)) C D (71'1(Y, yo)) (4.18)

Sketch of proof. If there exists a lift, then po f = f = Im f, C Imp, C w1 (X, xg)-

Furthermore, we need to show that the lift does exist and is unique provided Im f, C Im p,.
To this end, assume first that f exists. Since Z is path-connected, for any z € Z we can find a
path u connecting zy with z. Then fouisa path in Y projecting to f o u. In other words, fou
is the unique lift of f o u beginning at y,. In particular, at the terminal point we must have

f(z) = feu(l) (4.19)

so that f is unique if it exists.

The idea behind the proof of the existence of a lift is to utilize (4.19) to define f. To explain,
let u be a path in Z connecting z, with z as above. Define f by (4.19). To show that this is
well defined, let v be any other path connecting 2, with z. Then u * v is a loop based at z; and
therefore by (4.18) and Corollary 4.15, the lift of f o (u * v) is a loop in Y based at y,. This
implies

feu(l) = (fou)(1),

thus proving that f is well defined.

It is also pretty clear that f is continuous, since essentially f is obtained as a composition
of f and p~! restricted to a sufficiantly small open subset. The details can be found for example
in [Mas91, P. 129] (this uses the local path-connectedness of Z) [
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Let p1: (Y1,y01) — (X, x0) and po: (Y2, 902) — (X, zo) be two covering spaces.

Definition 4.20. A homomorphism of Y; into Y5 is a continuous map ¢: Y; — Y5 such that the
diagram

Y, — 5 Y

N

commutes. A homomorphism ¢ is called an isomorphism is there exists a homomorphism
Y: Yy — Y7 such that 1) o p = idy, and p o) = idy,. Inthe case Y; = Yo =Y and p; = po, an
isomorphism ¢: Y — Y is called a deck transformation.

Corollary 4.21. Let py: (Y1, yo1) — (X, x0) and pa: (Yo, yo2) — (X, xg) be two path-connected
and locally path-connected covering spaces. Then Y, and Y, are isomorphic if and only if
pre(m1 (Y1, y01)) and pa. (m1(Ya, yo2)) are conjugate in (X, o).

Proof. Let u be aloop in X based at xy such that

pQ*(Wl(Yzayw)) = [u] 'pl*(ﬂ'l(YhyOl)) - [u]. (4.22)

If @ is the lift of w starting at y,;, denote by vy, the terminal point of @. By the proof of
Proposition 4.6, the map

Pﬁ:Q(}/layé)l)—)Q<Yi7y01)7 UH&*U*Q
induces an isomorphism 7 (Y1, y;) — m1(Y1, Yo1). Combining this with (4.22) we obtain

D1+« (7T1(Y17 ym)) = [u] 'pl*(ﬁ(Yh y61)) : [ﬂ] - pl*(ﬁ(yh y(n)) = PQ*(W1(Y2, 902))'
The statement of this corollary follows from Lemma 4.17. U

Corollary 4.23. Let p: (Y,yo) — (X, ) be a path-connected and locally path-connected
covering. Then for any y1,y> € p~'(xo) there exists a unique deck transformation o such that

(Y1) = Yo O

4.4 The universal covering space and the classification of the
covering spaces

Definition 4.24. A path-connected topological space Y is said to be simply connected, if w1 (Y, yo)
is trivial for some (=- any) basepoint .

A simply-connected covering space of X is called the universal covering of X and is
typically denoted by X. It follows from Corollary 4.21 that for a path-connected and locally
path-connected space X if the universal covering exists, it is unique up to an isomorphism.

It turns out that the universal covering plays a very particular role. Our aim in this section
is to show that simply connected coverings exist. This in turn will allow us to strengthen
Corollary 4.21 substantially.
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Lemma 4.25 (A necessary condition for the existence of the universal covering). Assume
a path-connected and locally path-connected space X admits a simply connected covering
p: X — X. Then for any x € X there exists a neighbourhood U of x such that

1e: (U, ) = m (X, 2)

is the trivial homomorphism. This means that any loop in U based at x can be homotoped in X
to the constant loop.

Proof. Let U be a neighbourhood of z as in the definition of the covering. Pick any Z € p~*(z)
and denote by V' the component of p~!(U) containing z. Consider the commutative diagram

m(V,z) —— 7r1()~(,:i)

tl,).| |

m(Uz) —— m(X, ).

Notice that the homomorphism represented by the left vertical arrow is in fact an isomorphism.

Since m; (f( , ) is trivial, the image of 2, must be trivial, that is ¢, is the trivial homomorphism.
O

Definition 4.26. A space X such that for any € X there exists a neighbourhood U of x
such that 2,: m (U, x) — m (X, ) is the trivial homomorphism is called semilocally simply
connected.

The infinite union of shrinking circles as in Example 3.7 yields an example of a space, which
is path-connected, locally path-connected, but not semilocally simply connected.

Theorem 4.27. Any path-connected, locally path-connected, and semilocally simply connected
space X admits a universal covering space X.

Sketch of proof. Assume first that X admits a universal covering X. Denote by p: X — X the
projection and pick points =y € X and , € p~'(xy) C X. Since X is path-connected, for any
7 € X there is a path @ connecting z with 7.

If v is any other path with the starting point Zy and the terminal point Z, then we have

0~ Ux(

)x i~ . (4.28)

=g

xU) ~ (0

4]

Here the first and the second relations follow from the proof of Theorem 4.3, whereas the last
one follows from simply connectedness of X . Notice that all homotopies in (4.28) preserve the
ends of the corresponding paths, that is © and © are homotopic relative to the endpoints.

Thus, for any # € X there is a unique equivalence class of paths connecting &, with Z.
However, each u as above is the unique lift of u := p o @ starting at Z,. Therefore, we have a
natural bijective map

Xy = {[u] | wis a path in X starting at zo} — X, [u] — a(1),

where the equivalence relation for X is given by the existence of homotopies relative to the
endpoints. .
The idea is now to define the universal covering as X,. Notice that we have a natural map

p: Xo = X, [u] — u(1).
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It can be shown that X, admits a unique topology such that the above map is a covering [Mas91,
P. 143-144]. 3 )
To show that X is path-connected, for any [u] € X, consider the map

N u(t) ift <s
57 us(t) = u(s) ift > s.

This yields a path in X, between the constant path z, and [u].

It remains to show that (X’o, xg) is trivial. Since p, is injective, it suffices to show that
the image of 7 (X, ) in 7, (X, x) is trivial. Any element in Im p, is represented by [u] €
(X, zo) such that u lifts to a loop in X,. By the uniqueness of the lift, the curve

s > [ug) (4.29)

is the lift of u starting at the constant loop x,. This curve is a loop in X if [u1] = xo, that is
[u] = x¢. This finishes the proof. O

Theorem 4.30. Let (X, xq) be a path-connected, locally path-connected, and semilocally path-
connected space. There is a natural bijective correspondence between the set of all path-
connected coverings of X up to isomorphisms and the conjugacy classes of subgroups in
1 (X7 IO)'

Proof. Given a path-connected covering p: Y — X, pick any iy € p~*(z) and associate the
conjugacy class p.(m1 (Y, yo)) to Y. This is well defined and injective by Corollary 4.21.

Thus, we need to show that for any subgroup H in (X, x) there exists a covering (Y, yo)
such that p, (7r1(Y, yo)) is conjugate to H. Let X, be defined as in the proof of Theorem 4.27.

Define an equivalence relation on X by
[u] ~ [v] = u(l)=wv(l) and [ux*v]€ H.

The fact that  is a group implies that ~ is an equivalence relation.
Denote Y := X/ ~. We still have a natural map

Y = X, q([u]) = u(1),

which can be shown to be a covering.
Just like in the proof of Theorem 4.27, one can show that for any loop » in X based at x
the lift u to Y is given by (4.29). This is a loop in Y if and only if

[u] = [u1] ~ o,

where x denotes the class of the constant loop. This is clearly equivalent to saying that [u] € H.
In other words, by Corollary 4.15 we have

[u] € ¢.(m(Y,20)) <= [u] €H,
which proves the existence part. U

Let me note in passing that the hypotheses of Theorem 4.30 are not very restrictive. In
practice, one is usually interested in covering spaces of reasonably nice spaces, for example
manifolds. In this category, the hypotheses of being locally path-connected and semilocally
simply connected are satisfied automatically. Thus, for any path-connected (< connected)
manifold M there is a bijective correspondence between conjugacy classes of subgroups of
m1 (M) and its coverings. L20
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