MATH-F310: Differential Geometry I - Assignment 1 -

Smooth surfaces and Lagrange's multipliers theorem

- 1. \Diamond^1 Let $a, b, c \in \mathbb{R}$ be such that $ac b^2 > 0$. Show that the maximum and minimum values of the function $g(x_1, x_2) = x_1^2 + x_2^2$ on the ellipse $ax_1^2 + 2bx_1x_2 +$ $cx_2^2 = 1$ are of the form $\frac{1}{\lambda_1}$ and $\frac{1}{\lambda_2}$ where λ_1 and λ_2 are eigenvalues of the matrix $\left(\begin{array}{cc} a & b \\ b & c \end{array}\right).$
- 2. \diamond For the following functions $f : \mathbb{R}^3 \to \mathbb{R}$ determine all values $c \in \mathbb{R}$ for which $f^{-1}(c)$ is a surface in \mathbb{R}^3 .
	- (a) $f(x, y, z) = x^2 + y^2 + z^2$.
	- (b) $f(x, y, z) = x^2 + y^2 z^2$.
	- (c) $f(x, y, z) = xyz$.
- 3. \diamondsuit Let C be the circle of radius r in the yz-plane centered at the point $(0, R, 0)$, where $R > r$. And let T be the torus obtained by rotating C around the x-axis. More formally

$$
T := \left\{ \left(\sqrt{x^2 + y^2} - R \right)^2 + z^2 = r^2 \right\}
$$

Show that T is indeed a surface.

- 4. \spadesuit Show that $\{(x, y, z) \in \mathbb{R}^3 \mid y^2 = x^3\}$ is not a smooth surface in \mathbb{R}^3 .
- 5. \spadesuit Show that the maximum and the minimum values of the function $g(x_1, \ldots, x_{n+1}) =$ $\sum_{i,j=1}^{n+1} a_{ij} x_i x_j$ on the unit *n*-sphere $x_1^2 + \cdots + x_{n+1}^2 = 1$, where (a_{ij}) is a symmetric $n \times n$ matrix of real numbers, are eigenvalues of the matrix (a_{ij}) .

¹Exercises marked by a \diamond will be done in class (if time permits).

Exercises marked by a \bullet are to prepare at home for the first test (8th of November). Exercises marked by a † are extra exercises.

6. † The Klein bottle: For $(u, v) \in \mathbb{R}^2$ and $R > r$, consider the following functions

$$
x(u, v) = (R + r \cos u) \cos v
$$

\n
$$
y(u, v) = (R + r \cos u) \sin v
$$

\n
$$
\zeta(u, v) = r \sin(u) e^{iv/2} \in \mathbb{C}.
$$

Show that the image of the map $f : \mathbb{R}^2 \to \mathbb{R} \times \mathbb{C}, (u, v) \mapsto (x, y, \zeta)(u, v)$ is a surface of $\mathbb{R}^2 \times \mathbb{C} \cong \mathbb{R}^4$. This surface is called the Klein bottle. Note that

$$
\left(\sqrt{x^2 + y^2} - R\right)^2 + |\zeta|^2 = r^2,
$$

hence you can think of it as a torus for which the last coordinate does a half twist when v goes from 0 to 2π .