MATH-F310: Differential Geometry I - Assignment 10 -

Vector fields

- 1. (Hairy Ball theorem) The hairy ball theorem states that there exists a (smooth) nowhere zero vector field on S^k if and only if k is odd. The goal of this exercise is to prove this theorem.
 - (a) \diamond^{1} Show that there exists a vector field v on S^{2k+1} having no zeros. (*Hint: Use the fact that* $S^{2k+1} \subset \mathbb{C}^{k+1}$.) Prove in addition that the tangent bundle of S^{3} is diffeomorphic to $S^{3} \times \mathbb{R}^{3}$.
 - (b) \heartsuit Now suppose S^k has a nowhere zero vector field v. Show that we may assume that v has unit length.
 - (c) $\forall t \in \mathbb{R}$, let $f_t : S^k \to S^k$ be defined by

$$f_t(x) = \cos(t)x + \sin(t)v(x).$$

Prove that f_t defines a smooth homotopy between the identity and the antipodal map.

- (d) Compute the determinant of the differential of the identity and the antipodal map (at any point).
- (e) Consider the map $F: S^k \times S^1 \to S^k, F(x, e^{it}) := f_t(x)$. (Note that it is well defined and smooth). Use Sard's theorem to show that there exists $y \in S^k$ such that $F^{-1}(y)$ is a smooth, compact 1-dimensionnal manifold of $S^k \times S^1$. Hence $F^{-1}(y)$ is a union of circles.
- (f) † Understand why no such circle can intersect twice the spheres $S^k \times \{e^{i0}\}$ and $S^k \times \{e^{i\pi}\}$. Therefore, understand why there is a continuous path

¹Exercises marked by a \diamondsuit will be done in class (if time permits).

Exercises marked by a \heartsuit should be done at home.

Exercises marked by a [†] are extra exercises.

 $t \in [0,\pi] \to x_t \in S^k$ such that $f_t(x_t) = y$. Maybe up to some homotopy of F, we may assume that $\forall t \in [0,\pi], df_t|_{x_t}$ is an isomorphism.

- (g) Find a contradiction if k is even.
- 2. \diamond A smooth vector field v on a smooth manifold M is said to be complete, if for each $p \in X$, the maximal integral curve of v through p, has domain equal to \mathbb{R} . Determine which of the following vector fields are complete:
 - (a) $v(x, y) = (1, 0), M = \mathbb{R}^2$ (b) $v(x, y) = (1, 0), M = \mathbb{R}^2 \setminus \{(0, 0)\}$ (c) $v(x, y) = (-y, x), M = \mathbb{R}^2 \setminus \{(0, 0)\}$ (d) $v(x, y) = (1 + x^2, 0), M = \mathbb{R}^2$
- 3. \heartsuit Let M be a smooth manifold and let $X, Y \in \mathfrak{X}(M)$ be smooth vector fields. Recall that tangent vectors act on smooth functions $f \in C^{\infty}(M)$ $(X_p(f) = df_p(X))$. Hence X(f) is a function from $M \to \mathbb{R}$, $p \mapsto X_p(f)$. Define the operator [X, Y] by its action on smooth functions

$$[X,Y]_p(f) := X_p(Y(f)) - Y_p(X(f)).$$

Show that $[X, Y]_p$ is a tangent vector (show that its action is linear and satisfies the Leibniz rule). Compute the components of [X, Y] in the basis associated to coordinate charts. Prove that [X, Y] is a smooth vector field.

4. \heartsuit Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear map. Define the vector field X^A on \mathbb{R}^n by

$$X_p^A := A(p) \in \mathbb{R}^n \cong T_p \mathbb{R}^n.$$

Compute the flow φ_t^A of X^A and prove that for all t, it is a linear map.

- (a) Compute the flow in the particular case where $A : \mathbb{C}^n \to \mathbb{C}^n$ is diagonal multiplication by i and when $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ acting on \mathbb{R}^2 .
- (b) Suppose A is skew symmetric, then show that φ_t^A is an isometry. In other words, if A is in $\mathfrak{so}(n)$, then $t \mapsto \varphi_t^A$ is a curve in SO(n). This is a general phenomenon relating a Lie algebra and its associated Lie group.