MATH-F310: Differential Geometry I - Assignment 11 -

Exam preparation

1. Hyperbolic space:

Let $H := \{(t, x, y) \in \mathbb{R}^3 \mid -t^2 + x^2 + y^2 = -1, t > 0\}.$

- (a) Prove that H is a surface and describe its tangent space at a generic point $p \in H$.
- (b) Let $Q: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$ be the following bilinear form:

$$Q((t_1, x_1, y_1), (t_2, x_2, y_2)) := -t_1 t_2 + x_1 x_2 + y_1 y_2.$$

For any $\lambda \in \mathbb{R}$ and any $\theta \in [0, 2\pi)$, define the boost and rotation matrices by

$$F_{\lambda} := \begin{pmatrix} \cosh(\lambda) & \sinh(\lambda) & 0\\ \sinh(\lambda) & \cosh(\lambda) & 0\\ 0 & 0 & 1 \end{pmatrix} \quad R_{\theta} := \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta) & -\sin(\theta)\\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}.$$

Prove that both F_{λ} and R_{θ} preserve Q i.e. show that

$$\forall X \in \mathbb{R}^3$$
, $Q(X, X) = Q(F_\lambda X, F_\lambda X)$ and $Q(X, X) = Q(R_\theta X, R_\theta X)$.

- (c) Show that the restriction of F_{λ} to H defines a smooth map $f_{\lambda} : H \to H$. Compute the differential of f_{λ} .
- (d) Prove that any point $p \in H$ can be obtained from $p_0 = (1, 0, 0) \in H$ by a boost and a rotation i.e. that there exist $\lambda \in \mathbb{R}$ and $\theta \in [0, 2\pi)$ such that

$$p = R_{\theta} \circ f_{\lambda}(p_0). \tag{1}$$

(e) For $p \in H$, let $g_p = Q|_{T_pH \times T_pH}$ be the restriction of Q to T_pH . Prove that g is a Riemannian metric in the following way:

- i. Prove that at $p_0 = (1, 0, 0)$, g_{p_0} is positive definite.
- ii. Prove that $\forall X \in T_{p_0}H$

$$g_{p_0}(X,X) = g_{R_\theta \circ f_\lambda(p_0)} \left(d(R_\theta \circ f_\lambda) X, d(R_\theta \circ f_\lambda) X \right).$$

iii. Conclude.

2. Short exercise on the Torus:

Let

$$T_{r,R} := \left\{ \left(\sqrt{x^2 + y^2} - R \right)^2 + z^2 = r^2 \right\}$$

be a torus in \mathbb{R}^3 , R > r. Let $f: T_{r,R} \to \mathbb{R}$ be the restriction of the function $\mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto z$. Compute the critical points of f and the Gauss curvature K of $T_{r,R}$ at those critical points. (Hint: You can answer these questions without a lot of computations.)

3. Klein bottle:

Let $T = S^1 \times S^1$ be the Torus.

- (a) Prove that T admits an oriented atlas.
- (b) Consider the map $f: T \to T$ given by

$$f(z_1, z_2) := (-z_1, \overline{z_2}).$$

Prove that f is a local diffemorphism and that it reverses the orientation. (Either in the sense of exercise sheet 6, or in the following sense: Let $(U, \varphi = (x_1, x_2))$ be a chart near p and $(W, \chi = (y_1, y_2))$ be a chart near f(p). Suppose that both chart come from the same oriented atlas, and let $J_f(p)$ be the matrix representation of df_p in the bases $\{\partial_{x_1}, \partial_{x_2}\}$ of T_pT and $\{\partial_{y_1}, \partial_{y_2}\}$ of $T_{f(p)}T$. Then f reverses the orientation if and only if $\forall p \in T \det J_f(p) < 0.$)

- (c) Consider the Klein bottle $K := T/\sim$ where $p \sim f(p)$ and the quotient map $q: T \to K$. Construct an atlas on K for which q is a local diffeomorphism.
- (d) Prove that this atlas on K is not oriented.

4. Cotangent bundle and Hamiltonian mechanics:

Part 1, abstract: Let M^n be a smooth manifold with smooth atlas $\{(U_\alpha, \varphi_\alpha)\}$. We denote by x_1, \ldots, x_n the coordinates on \mathbb{R}^n and identify them with functions $\mathbb{R}^n \to \mathbb{R}$.

- (a) Prove that for each $q \in U_{\alpha}$, $\{d(x_i \circ \varphi_{\alpha})_q\}_i$ forms a basis of T_q^*M .
- (b) Construct a smooth atlas of T^*M and prove that the transition functions are smooth.

Part 2, concrete: Now we specialise to $M = \mathbb{R}$ with global coordinate x. An element of $T^*\mathbb{R}$ is a point $q \in \mathbb{R}$ together with an element $p \, dx_q \in T^*_q \mathbb{R}$. So

$$T^*\mathbb{R} \cong \mathbb{R}^2, \ (q, p \, dx_q) \mapsto (x(q), p).$$

Let $V : \mathbb{R} \to \mathbb{R}$ be a smooth function and define the vector field X on $T^*\mathbb{R}$ given by

$$X(x,p) := p \,\partial_x - \frac{\partial V}{\partial x} \partial_p.$$

(Recall that ∂_x and ∂_p are the speed along the curves $t \mapsto (x + t, p)$ and $t \mapsto (x, p + t)$.)

- (c) Let $\tilde{\gamma} : \mathbb{R} \to T^*\mathbb{R}$ be an integral curve of X. Write down the equations for $\tilde{\gamma}$ and prove that $\gamma := \pi \circ \tilde{\gamma} \ (\pi : T^*\mathbb{R} \to \mathbb{R} \text{ is the projection})$ solves the equation of motion $\gamma'' = -\nabla V$.
- (d) Prove that $\tilde{\gamma}$ stays on the same level set of the energy function

$$E: T^* \mathbb{R} \to R, \ E(x,p) = V(x) + \frac{1}{2}p^2.$$

(e) Suppose $V(x) = x^2/2$. Draw the level sets of E and find the integral curves of X. $\pi \circ \tilde{\gamma}$ is called the harmonic oscillator.