MATH-F310: Differential Geometry I - Assignment 4 -

Tangent space

- 1. \diamond^{1} Let $S \subset \mathbb{R}^{3}$ be a surface and $\psi: V \subset \mathbb{R}^{2} \to S$ be a local parametrisation. Denote by (u, v) denote the canonical coordinates of \mathbb{R}^{2} .
 - (a) Show that $\{D_u\psi, D_v\psi\}$ is a basis of TS on $\psi(V)$.
 - (b) For a curve $\gamma : (-1, 1) \to S$ with $\gamma(0) \in \psi(V)$, write down $\dot{\gamma}(0)$ in terms of that basis.
 - (c) For $p \in \psi(V)$ and $X = X_u D_u \psi + X_v D_v \psi \in T_p S$, find a curve γ such that $\dot{\gamma}(0) = X$.
 - (d) Let $f: S \to \mathbb{R}$ be a smooth function. Describe df in terms of the basis $\{D_u\psi, D_v\psi\}$ (as a matrix for example).
 - (e) Let S_1, S_2 be two surfaces and let $F : S_1 \to S_2$ be a smooth map. Compute dF in terms of bases given by local parametrisations.
- 2. \diamond Describe the tangent space at a point of the sphere S^2 in two ways : Using local charts and using the fact that S^2 is a level set. Compute the differential of the antipodal map: $S^2 \to S^2, x \mapsto -x$ at a point on the sphere.
- 3. \diamondsuit Cotangent space : The dual of the tangent space of a surface S at the point p is called the cotangent space and is denoted by T_p^*S . Show that for any $f \in C^{\infty}(S), d_p f \in T_p^*S$. Let $\psi: V \to S$ be a local parametrisation of S near p and let (u, v) be coordinates on \mathbb{R}^2 . Write $\tilde{u} = u \circ \psi^{-1}$ and $\tilde{v} = v \circ \psi^{-1}$. Show that $d\tilde{u}$ and $d\tilde{v}$ form a local basis for T^*S and for $f \in C^{\infty}(S)$, write $d_p f$ in that basis.

Note : In textbooks, people often identify u and \tilde{u} by abuse of notation. Indeed, there is only one obvious meaning of the statement $d_p u \in T_p^*S$.

¹Exercises marked by a \diamond will be done in class (if time permits).

Exercises marked by a \blacklozenge are to prepare at home for the first test (8th of November). Exercises marked by a \dagger are extra exercises.

- 4. \blacklozenge Describe the tangent spaces of:
 - (a) The hyperboloid $H = \{x^2 + y^2 z^2 = 1\}.$
 - (b) The torus $T := \left\{ \left(\sqrt{x^2 + y^2} R \right)^2 + z^2 = r^2 \right\}, R > r.$

$$\dot{\gamma}(t) = X_{\gamma(t)}$$

(It may be useful to make a drawing of the vector field X). γ is called an integral curve of X.

- 6. † Tangent vectors as derivations : Let $S \subset \mathbb{R}^3$ be a surface and denote by $C^{\infty}(S)$ the space of smooth functions $f: S \to \mathbb{R}$.
 - (a) Let $X \in T_pS$ be represented by the initial derivative of a curve γ : $(-1,1) \to S$ (i.e. $X = \dot{\gamma}(0)$). Define the action of X on $C^{\infty}(S)$ by

$$X(f) := \frac{d}{dt} f \circ \gamma(t)|_{t=0} = df(X) \quad \forall f \in C^{\infty}(S).$$

Show that this action is well defined (it doesn't depend on the curve representing X).

(b) Prove that the Leibniz rule holds i.e. for any $f, g \in C^{\infty}(S)$,

$$X(fg) = X(f)g(p) + f(p)X(g).$$
(1)

(c) Let $\psi: V \to S$ be a local parametrisation and (u, v) be coordinates on \mathbb{R}^2 . Show that the action $D_u \psi$ is given by

$$D_u \psi|_p(f) = \frac{\partial}{\partial u} (f \circ \psi)|_{\psi^{-1}(p)} \quad \forall f \in C^{\infty}(S).$$

Note : In many textbooks, you will see the notation $\frac{\partial}{\partial u}|_p \in T_pS$ to mean $D_u \psi|_p$.

(d) For any $p \in S$ let

$$\mathcal{D}_p := \{ X : C^{\infty}(S) \to \mathbb{R} \, | \, X \text{ satisfies } (1) \}$$

be the space of operators satisfying the Leibniz rule at p. We have shown that

$$\Phi: T_p S \to \mathcal{D}_p, V \mapsto (f \mapsto V(f))$$

is well defined. Show that \mathcal{D}_p is a vector space and that Φ is injective.

- (e) The rest of the exercise aims to prove that Φ is an isomorphism of vector spaces.
 - i. Let $\varphi \in C^{\infty}(\mathbb{R}^2)$. Prove that there exist functions φ_1 and φ_2 such that

$$\varphi = \varphi(0) + u\varphi_1 + v\varphi_2.$$

(Hint : Write $\varphi(x) = \varphi(0) + \int_0^1 \frac{d}{dt} \varphi(tx) dt$.) What is $\varphi_i(0)$?

ii. Let $X \in \mathcal{D}_p$ and $f \in C^{\infty}(S)$. By composing with a translation if neccessary, we may assume that $\psi^{-1}(p) = 0 \in \mathbb{R}^2$. Show that there exist local functions $f_1, f_2 : \psi(V) \to \mathbb{R}$ such that

$$f|_{\psi(V)} = f(p) + (u \circ \psi^{-1})f_1 + (v \circ \psi^{-1})f_2.$$

iii. Show that $X \in \Phi(T_pS)$.