MATH-F310: Differential Geometry I - Assignment 7 -

Curvature

1. \diamond^{-1} Let $S \subset \mathbb{R}^3$ be an oriented surface and $n : S \to S^2$ be its Gauss map. The direction of the eigen-vectors of $dn_p : T_pS \to T_pS$ are called the *principal* directions while the eigen-values are called the *principal curvatures* (note that they depend on the sign of the Gauss map). Show that the principal directions are orthogonal.

Prove that if S is a surface of revolution (i.e. in cylindrical coordinates,

$$S = \{(\rho \cos \theta, \rho \sin \theta, z) \in \mathbb{R}^3 \mid \rho = f(z)\}$$

with $f : \mathbb{R} \to \mathbb{R}$ is positive), then the meridians $(\{\theta = cst\})$ and parallels $(\{z = cst\})$ define principal directions.

Deduce that the cylinder and the cone are flat (i.e. they satisfy K = 0 everywhere).

- 2. \diamondsuit Let $\gamma: I \to S$ be a smooth curve where I is an open interval. Suppose that γ is regular (i.e. $\gamma'(t) \neq 0 \ \forall t \in I$).
 - (a) Let $\gamma \circ \varphi$ be a reparametrisation of γ ($\varphi : I' \to I$ is an increasing function). Understand how the acceleration $\gamma''(t)$ changes under such reparametrisation.

Define the curvature of γ as

$$k^{\gamma}(\gamma(t)) := (\gamma''(t))^{\perp} / |\gamma'(t)|^2,$$

where \perp denotes the component orthogonal to $\gamma'(t)$. Prove that k^{γ} doesn't depend on the parametrisation of γ .

<u>Note</u>: If γ draws a circle of radius R, then $k^{\gamma} = 1/R$.

¹Exercises marked by a \diamondsuit will be done in class (if time permits). Exercises marked by a \clubsuit are to prepare at home for the second test. Exercises marked by a \dagger are extra exercises.

(b) Prove that there exists an arc length parametrisation of γ , i.e. a parametrisation $\gamma(s)$ for which $|\gamma'(s)| = 1 \forall s$. Prove then that

$$k^{\gamma}(\gamma(s)) = \gamma''(s).$$

(c) Decompose the curvature as $k^{\gamma} = k_S^{\gamma} + k_N^{\gamma}$ where $k_S^{\gamma} \in TS$ and $k_N^{\gamma} \perp TS$. Prove that

$$k_N^{\gamma}(\gamma(t)) = -\left\langle \frac{\gamma'(t)}{|\gamma'(t)|}, dn\left(\frac{\gamma'(t)}{|\gamma'(t)|}\right) \right\rangle n(\gamma(t))$$

where n is the Gauss map.

<u>Remark</u>: In particular, $k_N^{\gamma}(\gamma(t))$ only depends on the point $\gamma(t)$ and on the direction of $\gamma'(t)$ but not on the full trajectory of γ . Therefore, $k_N^{\gamma}(p)$ computes the curvature of S in the direction of γ' at the point p while k_S^{γ} computes the curvature of γ in S. The generalisations of straight lines, called geodesics, are the curves γ that satisfy $k_S^{\gamma} = 0$. "They do not turn in S."

(d) Fix $p \in S$ and denote by $k_1(p), k_2(p)$ the maximal and minimal values of $\gamma \mapsto \langle k_N^{\gamma}(p), n(p) \rangle$. Prove that

$$K(p) = k_1(p)k_2(p)$$
 and $H(p) = \frac{1}{2}(k_1(p) + k_2(p)).$

3. Suppose S is a surface of revolution. Compute the principal curvatures (eigen-values of dn) at each point of S. Prove that the Catenoid

$$C_a := \{ (\rho \cos \theta, \rho \sin \theta, z) \in \mathbb{R}^3 \mid \rho(z) = a \cosh(z/a) \}$$

is minimal (i.e. H = 0 everywhere) for any a > 0.

- 4. Show that an orientable connected surface whose Gauss and mean curvatures are identically zero must be an open subset of a plane.
- 5. † Compute the Gauss and mean curature at every point of the Torus $T := \left\{ \left(\sqrt{x^2 + y^2} R \right)^2 + z^2 = r^2 \right\}, R > r.$