MATH-F310: Differential Geometry I - Assignment 8 -

Manifolds

- 1. \diamond^{-1} Let $\mathbb{C}P^n$ be the set of all complex lines in \mathbb{C}^{n+1} . Prove that $\mathbb{C}P^n$ is a smooth manifold. Prove that $\mathbb{C}P^1$ is diffeomorphic to S^2 .
- 2. \diamond One can define $\mathbb{R}P^2 := S^2 / \sim$, where $(x, y, z) \sim (-x, -y, -z)$.
 - (a) Show that $\mathbb{R}P^2$ is a smooth manifold.
 - (b) Define a map $f: S^2 \to \mathbb{R}^4$, by

$$f(x, y, z) := (xy, xz, y^2 - z^2, 2yz)$$

Show that it is smooth. Moreover prove that it induces a smooth map $\tilde{f}: \mathbb{R}P^2 \to \mathbb{R}^4$.

- (c) Prove that the differential of \tilde{f} is injective at all points of $\mathbb{R}P^2$.
- 3. \diamond Let $SU(2) := U(2) \cap SL(2, \mathbb{C})$ be unitary 2×2 matrices with determinant one. Show that the map $f : S^3 \subset \mathbb{C}^2 \to SU(2)$,

$$f(\alpha,\beta) = \left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array}\right)$$

is a homeomorphism $(\alpha, \beta \in \mathbb{C})$. And hence we can construct charts on SU(2) to prove that it's a smooth manifold of dimension 3.

4. \clubsuit Let V be a vector space over \mathbb{R} , show that the general linear group

 $GL(V) := \{A : V \to V \mid A \text{ is linear and invertible}\}\$

is a smooth manifold. What is its dimension?

¹Exercises marked by a \diamondsuit will be done in class (if time permits). Exercises marked by a \clubsuit are to prepare at home for the second test. Exercises marked by a \dagger are extra exercises.

5. \clubsuit Consider the function

$$f: \mathbb{R}P^2 \to \mathbb{R}, \quad f([x:y:z]) = \frac{xy + yz + xz}{x^2 + y^2 + z^2}$$

Show that f is smooth and find all critical points of f.

6. \dagger (*Canonical line bundle :*) Let M be the space of points in \mathbb{R}^{n+1} together with a line through that point. Formally,

$$M := \{ (p, l) \in \mathbb{R}^{n+1} \times \mathbb{R}P^n \, | \, p \in l \}.$$

Prove that M is a smooth manifold. Consider $\pi : M \to \mathbb{R}P^n$ defined by $\pi(p, l) = l$. Prove that π is a surjection and that for any $l \in \mathbb{R}P^n$, $\pi^{-1}(l)$ is a one dimensionnal submanifold of M that we may identify with l.