MATH-F310: Differential Geometry I
- Assignment 9 -

Tangent space and submanifolds

1. & (Tangent vectors as derivations®:) Let M be a manifold of dimension n
with p € M.

(a) Let X € T,M be represented by the initial derivative of a curve 7 :
(—=1,1) = M (i.e. X = [y]). Define the action of X on C*°(M) by

X(P) = & fors = ar(x) vF e C(an).

Show that this action is well defined (it doesn’t depend on the curve
representing X).

(b) Prove that the Leibniz rule holds i.e. for any f,g € C*°(M),
X(fg9) = X(Hg(p) + f(p)X(9)- (1)

(c) Let ¢ : U € M — R" be a local chart and z’ be coordinates on R". Fix
p € U and let 7; : (—¢,€) — U be the curve starting at p and along the z
coordinate in the chart i.e. defined by

wov(t)=wp() +(0,.., t ,..0).

Show that the action of [v;] is given by

0
- Ot

Exercises marked by a < will be done in class (if time permits).
Exercises marked by a © should be done at home.
Exercises marked by a T are extra exercises.

2This was an extra exercise in the fourth assignment.

il (f) (foo Dlw VfeC™(M).
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Note : In many textbooks, you will see the notation 7|, € T,M to mean

[vi]-

Ozt

(d) For any p € M let

D, :={X :C*(M) — R| X satisfies (1)}

be the space of operators satisfying the Leibniz rule at p. We have shown

that

O:T,M —D,,Y — (f—=Y(f))

is well defined. Show that D, is a vector space and that ® is injective.

(e) The rest of the exercise aims to prove that ® is an isomorphism of vector
spaces.

1.

ii.

1il.

Let g € C*(R™). Prove that there exist functions g; such that
9=290)+> z'g;.
i=1

(Hint : Write g(x) = ¢(0) + fol Lg(tx)dt.) What is ¢;(0)?

Let X € D, and f € C*(M). By composing with a translation if
neccessary, we may assume that ¢(p) = 0 € R™. Show that there
exist local functions f; : U — R such that

flo = fp) + Z(a: o ¥)fi.

(You may need to reduce ¢(U) so that it is convex.)

Prove that X (f) only depends on the behaviour of f near p. To see
this, show that for any open set V of M satisfyingp e V CV Cc U
there exist functions p, o € C°°(M) such that

o =1onV and supp(c) C U,
=1lonU.

Then consider X ((1 — p)o) and prove that X(f) = X(pf). Since
the choice of p is arbitrary and so is the size of U, we conclude that

X(f) = X(flv)-



[\]

iv. Show that X € ®(7T,M).

¢ Let f: 5% — R be the function f (1, 2, 23, 24) = 2% 4+ x3. Show that 1 is a
regular value of f. Deduce that f~1 (%) is a submanifold of S? and show that
this submanifold is diffeomorphic to the torus S' x S*.

¢ Consider the curve v : R — S1 x S1 ¢t — (e ). Prove that v is an
injective immersion but that it is not an embedding. Hence v(R) is not a

submanifold of the torus.

Q Prove that SU(n) is a smooth manifold. Compute its dimension and its Lie
algebra (i.e. compute Tiq SU(n)).

Q Prove that the set of all 2 x 2 matrices of rank 1 is a three-dimensional sub-
manifold of R* = M (2). [Hint: Use the determinant function det: M (2)\{0} —
R |

T (Smooth Urysohn Theorem:) If A and B are disjoint, closed subsets of a
smooth manifold X, Prove that there is a smooth function f on X, such that
0<f<1with f=00on Aand f=1on B. [Hint: partition of unity.]

T (Morse function on a manifold:) Suppose that a point z € R¥ is a nonde-
generate critical point of a function f : R¥ — R. We define the matrix

1) = (509 @)

to be the Hessian of f at z. If the Hessian is non-singular at the critical point
a, one says a is a nondegerate critical point of f. The concept of nongeneracy
makes sense on manifolds, via local parametrizations. Suppose that f: X — R
has a critical point at x € X and that ¢ is a local parametrization carrying
the origin to z. Then 0 is a critical point for the function f o, for do(foyp) =
d.f odpy. We shall declare x to be nondegerate for f if 0 is nondegenerate for
f o . The difficulty with such local definitions is that one must always prove
the cloice of parametrization to be unimportant. In this case, if ¢; and ¢, are
two choices, then f o ¢, = (f 0 ¢s) 01, where ¢ = ¢, ' 0 ;. Now prove that:

(a) Suppose that f is a function on R¥ with a nondegenerate critical point
at 0 , and ¥ is a diffeomorphism with ¢(0) = 0. Then f o is also a
nondegenerate critical point at 0 . Observe that this result makes the
nondegenerate points on a manifold well-defined. A function is Morse if
all the critical points are nondegerate.

(b) Suppose that f = Zij aijziz; in R¥. Check that its Hessian matrix is
H = (a;;). Considering R* as the vector space of column vectors, H



operates as a linear map by left multiplication, as usual. Show that if
Hv = 0, then f is critical all along the line through v and 0 . Thus the
origin is an isolated critical point iff H is non-singular.

Show that the height function h : (1, %9, z3,74) — 4 on the sphere S? is
a Morse function with two critical points, the poles. Note that one pole
is a maximum and the other a minimum.



