Assignment 5

MATH-F310: Differential Geometry I

October 27, 2023

1. Show that if S is a connected surface in \mathbb{R}^{3} and $g: S \rightarrow \mathbb{R}$ is smooth and takes on only the values +1 and -1 , then g is constant. Show by example that if S is not connected, then the result fails.
2. The holomorphic map $z \mapsto z^{2}$ extends to a smooth map $f: S^{2} \rightarrow S^{2}$ using stereographic projection. Compute the diferential of this map at a point $p \in S^{2}$ and find out the critical points of f.
3. Prove that the vector space of smooth functions on a surface is infinite dimensional.
4. Show that the two orientations of the sphere $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=r^{2}$ of radius r, is determined by the two normal fields $N_{1}(p)=(p, p / r)$ and $N_{2}(p)=(p,-p / r)$.
5. Let S be a surface on \mathbb{R}^{3} and let $p_{0} \in \mathbb{R}^{3} \backslash S$. Show that the shortest line segment from p_{0} to S (if one exists) is perpendicular to S, i.e., show that if $p \in S$ such that $\left\|p_{0}-p\right\|^{2} \leq\left\|p_{0}-q\right\|^{2}$ for all $q \in S$, then the line segment $p_{0}-p$ at p is perpendicular to $T_{p} S$.
