Assignment 5

MATH-F310: Differential Geometry I

October 27, 2023

- 1. Show that if *S* is a connected surface in \mathbb{R}^3 and $g: S \to \mathbb{R}$ is smooth and takes on only the values +1 and -1, then *g* is constant. Show by example that if *S* is not connected, then the result fails.
- 2. The holomorphic map $z \mapsto z^2$ extends to a smooth map $f : S^2 \to S^2$ using stereographic projection. Compute the differential of this map at a point $p \in S^2$ and find out the critical points of f.
- 3. Prove that the vector space of smooth functions on a surface is infinite dimensional.
- 4. Show that the two orientations of the sphere $x_1^2 + x_2^2 + x_3^2 = r^2$ of radius *r*, is determined by the two normal fields $N_1(p) = (p, p/r)$ and $N_2(p) = (p, -p/r)$.
- 5. Let *S* be a surface on \mathbb{R}^3 and let $p_0 \in \mathbb{R}^3 \setminus S$. Show that the shortest line segment from p_0 to *S* (if one exists) is perpendicular to *S*, i.e., show that if $p \in S$ such that $||p_0 p||^2 \leq ||p_0 q||^2$ for all $q \in S$, then the line segment $p_0 p$ at *p* is perpendicular to T_pS .