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Chapter 1

Smooth surfaces

1.1 The notion of a smooth surface

Let U ⊂ Rn be an open subset and f ∈ C1 (U). It is known from analysis that x0 ∈ U is a point
of extremum for f if

∂f

∂xi
(x0) = 0

holds for all i = 1, . . . , n. Notice that this is a necessary condition, which is not sufficient in
general.

A more general type of problems does not fit into this scheme. For example, consider the
following.

Problem. Among all rectangular parallelepipeds, whose diagonal has a fixed length, say 1,
find the one with maximal volume.

x

y

z

Figure 1.1: A parallelepiped

Thus, we want to find a point of maximum of the function f (x, y, z) = xyz on the set

V = {(x, y, z) ∈ R3 |x > 0, y > 0, z > 0 and x2 + y2 + z2 = 1} ⊂ S2. (1.1)

However, V is not an open subset of R3 so that the receipy known from the analysis course is
not readily applicable.
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Differential Geometry I

S

Figure 1.2: The spherical triangle x, y, z > 0

This problem is relatively easy to solve, however. Indeed, since z > 0, we obtain z =√
1− x2 − y2 so that we are essentially interested in the function

F (x, y) := f
(
x, y,

√
1− x2 − y2

)
= xy

√
1− x2 − y2.

More precisely, we want to find points of maximum of F on the set {(x, y) |x2 + y2 < 1, x >
0, y > 0}, which is an open subset of R2.

We compute
∂F

∂x
= y
√

1− x2 − y2 − xy
x√

1− x2 − y2
= 0,

∂F

∂y
= x

√
1− x2 − y2 − xy

y√
1− x2 − y2

= 0.

(1.2)

Since x ̸= 0 and y ̸= 0, we have

(1.2) ⇐⇒
1− x2 − y2 = x2

1− x2 − y2 = y2
=⇒ x2 = y2 =⇒ x = y

=⇒ 3x2 = 1 =⇒ x = y =
1√
3

=⇒ z =
1√
3
.

Hence, if there is a parallelepiped maximizing the volume among all rectangular parallelepipeds
with the given length of the diagonal, this must be the cube.

Exercise 1.3. Show that
(

1√
3
, 1√

3
, 1√

3

)
is a point of maximum indeed.

Consider a more general problem of constrained maximum/minimum. Given f, φ ∈ C∞ (Rn)
find a point of maximum/minimum of f on the set

S := {x ∈ Rn | φ(x) = 0}.
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Proposition 1.4. Assume that for p ∈ S we have

∂φ

∂xn
(p) ̸= 0. (1.5)

Then there is a neighbourhood W of p in Rn, an open subset V ⊂ Rn−1, and a smooth function
ψ : V → R such that for x = (y, z) ∈ Rn−1 × R we have

x ∈ S ∩W ⇐⇒ y ∈ V and z = ψ (y) .

This is a celebrated implicit function theorem, whose proof was given in the analysis course.

Theorem 1.6. Let p ∈ S be a point of (local) maximum of f on S. If (1.5) holds, then there
exists some λ ∈ R such that

∂f

∂xj
(p) = λ

∂φ

∂xj
(p) ⇐⇒ ∇f (p) = λ∇φ (p) (1.7)

holds for each j = 1, . . . , n.

Proof. Let p = (y0, z0) be a local maximum for f on S. Hence, y0 is a local maximum for the
function

F : V → R, F (y) := f (y, ψ (y))

This yields
∂F

∂yj
(y0) =

∂f

∂yj
(p) +

∂f

∂xn
(p)

∂ψ

∂yj
(y0) = 0

for all j ≤ n− 1.
Furthermore, since φ (y, ψ (y)) ≡ 0, we have

∂φ

∂yj
+

∂φ

∂xn

∂ψ

∂yj
≡ 0.

This yields in turn

∂ψ

∂yj
(y0) = − ∂φ

∂yj
(p)
/ ∂φ

∂xn
(p) =⇒ ∂f

∂yj
(p) =

(
∂f

∂xn
(p)
/ ∂φ

∂xn
(p)

)
· ∂φ
∂yj

(p) .

Thus, (1.7) holds for all j ≤ n− 1 with λ := ∂f
∂xn

(p)
/
∂φ
∂xn

(p) independent of j.
For j = n we have

∂f

∂xn
(p) =

(
∂f

∂xn
(p)
/ ∂φ

∂xn
(p)

)
· ∂φ
∂xn

(p) = λ
∂φ

∂xn
(p) .

Thus, (1.7) holds also for j = n with the same λ. □

Let us come back to the example about maximal value of parallelepipeds with a fixed length
of the diagonal. Thus, if (x, y, z) is a point of maximum of f on (1.1), then there exists λ ∈ R
such that

yz = 2λx

xz = 2λy

xy = 2λz

=⇒ (xyz)2 = 8λ3xyz =⇒ xyz = 8λ3.
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This yields in turn
8λ3 = xyz = x(yz) = 2λx2.

Notice that λ ̸= 0, since otherwise x = 0 or y = 0 or z = 0. Hence, we obtain x = 2λ.
A similar argument yields also y = 2λ and z = 2λ. Therefore we obtain

4λ2 + 4λ2 + 4λ2 = 1 =⇒ λ =
1

2
√
3

=⇒ x = y = z =
1√
3
,

which is in agreement with our previous computation.
Coming back to Proposition 1.4, it is clear that it is only important that one of the partial

derivatives of φ does not vanish. This leads to the following definition.

Definition 1.8 (Surface). A non-empty set S ⊂ R3 is called a (smooth) surface, if for any p ∈ S
there exists an open set V ⊂ R2 and a smooth map ψ : V → R3 such that the following holds:

(i) ψ (V) =: U is a neighbourhood of p in S; in particular, ψ(V) ⊂ S.

(ii) ψ : V → U is a homeomorphism.

(iii) Dqψ : R2 → R3 is injective ∀q ∈ V.

Example 1.9. Assume φ ∈ C∞ (R3) satisfies

∂φ

∂z
(p) ̸= 0 for all p ∈ S := φ−1(0).

Let ψ be as in Proposition 1.28. Define Ψ(x, y) := (x, y, ψ (x, y)). If U and V are also as in
Proposition 1.28, then Ψ: V → S ∩U is a homeomorphism, since π : S ∩U → V, π (x, y, z) =
(x, y) is a continuous inverse. Furthermore,

DΨ =

 1 0
0 1
∂xψ ∂yψ


is clearly injective at all points. Hence, S is a surface.

Again, the same conclusion holds if we assume only that ∇φ(p) ̸= 0 for all p ∈ φ−1(0). In
particular,

• the sphere S2 = {x2 + y2 + z2 = 1}

• the cylinder C = {(x, y, z) |x2 + y2 = 1}

• the hyperboloid H = {x2 + y2 − z2 = 1}

are surfaces

Example 1.10 (Torus). Let C be the circle of radius r in the yz-plane centered at the point
(0, a, 0) as shown on Fig. 1.4, where a > r.

More formally,
T :=

{(√
x2 + y2 − a

)2
+ z2 = r2

}
.

Exercise 1.11. Check that T is a surface indeed.
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Figure 1.3: The cylinder and hyperboloid

y

z

x

rotate

Figure 1.4: The torus as a circle rotated with respect to an axis

Example 1.12 (A non-example). The double cone C0 := {x2 + y2 − z2 = 0} is not a surface.
Indeed, assume C0 is a surface. Then the tip of the cone p must have a neighbourhood U
homeomorphic to an open disc in R2.

Let f : U → D be a homeomorphism. Then f : U\{p} → D\{f (p)} is also a homeomorphism.
However, this is impossible, since the punctured disc is connected but U\{p} is disconnected.
Hence, p does not have a neighbourhood homeomorphic to a disc (or any open subset of R2).

Exercise 1.13. Show that a straight line is not a surface.

Remark 1.14.

1) The map ψ in the definition of the surface is called a parametrization.

2) Condition (iii) is equivalent to the following:

∂uψ and ∂vψ are linearly independent

at each point (u, v) ∈ V.

Proposition 1.15. Let S be a surface. For any p ∈ S there exists a neighbourhood W ⊂ R3

and φ ∈ C∞ (W ) such that

S ∩W = {x ∈ W |φ (x) = 0} and ∇φ (x) ̸= 0

for any x ∈ S ∩W .
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Figure 1.5: The torus

P

Figure 1.6: The double cone

Proof. Choose a parametrization ψ : V → U ⊂ S. Let (u0, v0) ∈ V be a unique point such that
ψ (u0, v0) = p. Choose a vector n ∈ R3 such that

∂uψ (u0, v0) , ∂vψ (u0, v0) , n (1.16)

are linearly independent. Consider the map

Ψ: V × R → R3, Ψ(u, v, w) = ψ (u, v) + w · n

The linear independence of (1.16) yields detDΨ(u0, v0, 0) ̸= 0. By the inverse map theorem,
there exists an open neighbourhood W ⊂ R3 of p and a smooth map Φ: W → V × R ⊂ R3

such that
Ψ ◦ Φ (x) = x ∀x ∈ W.

If Φ = (φ1, φ2, φ3), then

Ψ ◦ Φ (x) = ψ (φ1 (x) , φ2 (x)) + φ3 (x) · n = x.

Observe that

x ∈ S ∩W ⇐⇒ ∃ (u, v) ∈ V such that ψ (u, v) = x

and consequently

Ψ(u, v, 0) = ψ (u, v) = x = Ψ(φ1 (x) , φ2 (x) , φ3 (x)) .
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Since Ψ is injective (on an open neighbourhood of (u0, v0, 0)), we have

x ∈ S ∩W ⇐⇒ φ3 (x) = 0.

Furthermore, since detDΦ (x) ̸= 0 for all x ∈ W , the vectors ∇φ1 (x) ,∇φ2 (x) ,∇φ3 (x) are
linearly independent at each x ∈ W . In particular, ∇φ3 (x) ̸= 0 for all x ∈ W . □

The following corollary follows immediately from Proposition 1.15.

Corollary 1.17. Any surface is locally the graph of a smooth function. □

Example 1.18 (A non-example). The union of two intersecting planes in R3 is not a surface.
Indeed, assume that

S := {z = 0} ∪ {x = 0}
is a surface. Then there exists a smooth function φ defined in a neighbourhood W of the
origin such that φ vanishes on S and ∇φ(0) ̸= 0 by Proposition 1.15. Notice that φ vanishes
identically along S, hence φ vanishes identically along all three coordinate axes (at least in a
neighbourhood of the origin). This yields in turn ∇φ (0) = 0, which is a contradiction.

Exercise 1.19. Show that the cone C := {x2 + y2 − z2 = 0, z ≥ 0 } is not a smooth surface,
cf. Example 1.12 above.

1.2 The change of coordinates maps
Neither parametrizations, nor local functions as in the Proposition 1.15 are unique. Our next
goal is to understand a relation between different parametrizations.

Thus, let
ψ1 : V1 −→ U1 ⊂ S and ψ2 : V2 −→ U2 ⊂ S

be two parametrizations such that U1 ∩ U2 ̸= 0. Since both ψ1 and ψ2 are homeomorphisms,
we have a well-defined continuous map

ψ21 := ψ−1
2

◦ ψ1 : V12 −→ V21

which is called "a transition map" or "a change of coordinates map".
Notice that ψ21 is a map R2 −→ R2 defined on an open subset. Therefore, transition maps

can be studied by the tools familiar from the analysis course.

Example 1.20. Consider the sphere S2, which can be covered by the images of two parametrizations
as follows. The inverse of the steregraphic projection from the north pole N is given by

(u, v) 7−→ ψN (u, v) =
1

1 + u2 + v2
(
2u, 2v,−1 + u2 + v2

)
This is a homeomorphism viewed as a map R2 −→ S2\{N} and is clearly smooth.

Exercise 1.21. Show that DψN is injective at each point.

Thus, ψN is a parametrization (at each point p ∈ S2\{N}). Of course, we have also the
inverse ψS of the stereographic projection from the south pole S. The images of these two
parametrizations cover together the whole sphere S2. A straightforward computation shows
that the change of coordinates map ψSN := ψ−1

S
◦ ψN : R2\{0} −→ R2\{0} is given by

ψSN (u, v) =
1

u2 + v2
(u, v)
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U1 U2

V1 V2

ψ1
ψ2

ψ−1
2

◦ ψ1

V12 := ψ−1
1 (U1 ∩ U2) ψ−1

2 (U1 ∩ U2) = V21

Figure 1.7: The transition map

Exercise 1.22. Show that the sphere can not be covered by the image of a single parametrization.

Theorem 1.23. Let S be a surface. For any two parametrizations ψ1 and ψ2 as above, the
change of coordinates map ψ12 is smooth.

Proof. Since smoothness is a local property, it suffices to show that for all (u0, v0) ∈ V12 there
exists a neighbourhood V0 ⊂ V12 such that ψ21

∣∣
V0

is smooth.
Thus, set p0 := ψ1 (u0, v0). For this p0 and ψ2 construct a smooth map Φ2 : W −→ V2 × R

as in the proof of the Proposition 1.15. Recall that

Φ2

∣∣
S∩W : S ∩W −→ V2 × {0} = V2

equals ψ−1
2 .

The map Φ2 ◦ ψ1 : ψ
−1
1 (S ∩W ) → V2 is clearly smooth as a composition of smooth maps.

Set V0 := V12 ∩ ψ−1
1 (S ∩W ). Since the image of ψ1 lies in S, we obtain that

Φ2 ◦ ψ1

∣∣
V0

= ψ−1
2

◦ ψ1

∣∣
V0

= ψ21

∣∣
V0

is smooth. □

1.3 Smooth functions on surfaces
Definition 1.24. Let S be a surface. A function f : S → R is said to be smooth, if for any
parametrization ψ : V → U the composition

F := f ◦ ψ : V −→ R
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N

ψN (u, v)

(u, v)

Figure 1.8: The inverse of the stereographic projection

is smooth. The function F := f ◦ ψ is called a local (coordinate) representation of f .

Remark 1.25. Theorem 1.23 imples that if f ◦ ψ1 is smooth, then f ◦ ψ2 is also smooth on
V21 = ψ−1

2 (U1 ∩ U2). Indeed,

f ◦ ψ2 = f ◦ ψ1 ◦
(
ψ−1
1

◦ ψ2

)
= (f ◦ ψ1) ◦ ψ12

f ◦ψ1 and ψ12 are smooth. Hence, if (Vi, ψi) is a collection of parametrizations such that ψi (Vi)
covers all of S, it suffices to check that f ◦ ψi is smooth for all i.

Example 1.26. Let h : R3 → R be an arbitrary smooth function. Define f : S → R as the
restriction of h. Then f is smooth, since for any parametrization ψ we have f ◦ ψ = h ◦ ψ and
the right hand side is clearly smooth.

For example, for any fixed a ∈ R3 the height function

fa (x) = ⟨a, x⟩ x ∈ S

is a smooth function on S. In particular, set S = S2 and h (x, y, z) = z. Then the coordinate
representation of f = h

∣∣
S2 with respect to ψN is

F (u, v) = f ◦ ψN (u, v) =
−1 + u2 + v2

1 + u2 + v2
.

This can be seen as a sanity check: This function is smooth indeed.

Example 1.27. Letψ : V → U be a parametrization of a surface S. Sinceψ is a homeomorphism,
we have the inverse map

φ := ψ−1 : U −→ V.

Since U itself is a surface (with a single parametrization ψ), it makes sense to ask if φ viewed
as a map U → R2 is smooth, which means by definition that both components of φ are smooth
functions. This is the case indeed, since the local representation of φ is nothing else but φ ◦ψ =
id, which is surely smooth. Any such pair (U, φ) is called a chart on S.
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Proposition 1.28. Let S be a surface. Then the set C∞ (S) of all smooth functions on S is a
vector space, that is

f, g ∈ C∞ (S)

λ, µ ∈ R
=⇒ λf + µg ∈ C∞ (S) .

In fact, we also have

f, g ∈ C∞ (S) =⇒ f · g ∈ C∞ (S) ,

where f · g is the product-function p 7→ f(p) · g(p).

Proof. We prove the last statement only, while the first one is left as an exercise to the reader.
If ψ : U → V is a parametrization, then (f · g) ◦ ψ = (f ◦ ψ) · (g ◦ ψ). Since (f ◦ ψ) ∈ C∞ (V)
and (g ◦ ψ) ∈ C∞ (V), the function (f · g) ◦ ψ is smooth as the product of smooth functions of
two variables. □

Let W ⊂ Rn be an open set.

Definition 1.29. A continuous map f : W −→ S, where S is a surface, is called smooth, if for
any parametrization ψ : V → U ⊂ S the map

φ ◦ f = ψ−1 ◦ f : f−1 (U) −→ V ⊂ R2

is smooth.

In the above definition we require that f is continuous to ensure that f−1(U) is an open
subset so that it makes sense to talk about smoothness of the coordinate representation φ ◦ f .

W

f−1 (U)

U

V

f

φ ◦ f

φψ

Figure 1.9: A map into a surface and its coordinate representation

Proposition 1.30. f : W → S is smooth if and only if f is smooth as a map W → R3. More
formally, this means the following: If ι : S → R3 denotes the natural inclusion map, then

f ∈ C∞ (W ;S) ⇐⇒ ι ◦ f ∈ C∞ (W ;R3
)
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Proof. Pick a parametrization ψ of S and construct a smooth map Φ: X → R3 just as in the
proof of Proposition 1.15, where X ⊂ R3 is an open set. Assume f : W → R3 is smooth. Then
Φ ◦ f is also smooth as the composition of smooth maps. However, since f takes values in S
and Φ|S = φ = ψ−1, we obtain that φ ◦ f = Φ ◦ f : R2 → R2 is smooth.

Conversely, assume that f : W → S is smooth. Then

f
∣∣
f−1(U)

= (ψ ◦ φ) ◦ f
∣∣
f−1(U)

= ψ ◦ (φ ◦ f)
∣∣
f−1(U)

is again smooth as the composition of smooth maps. □

The following class of maps will be particularly important in the sequel.

Definition 1.31. Let I ⊂ R be an (open) interval. A smooth map γ : I → S is called a smooth
curve on S.

If 0 ∈ I , we say that γ is a smooth curve through p := γ (0) ∈ S.

γ (0)

Figure 1.10: A smooth curve on a surface

Example 1.32. Let p ∈ S2 and v ∈ R3 such that ⟨p, v⟩ = 0 and ∥v∥ = 1. Define γv : R → R3

by γv (t) = (cos t) · p+ (sin t) · v. Since

∥γv (t) ∥2 = ⟨cos t · p+ sin t v, cos t p+ sin t · v⟩
= cos2 t · ∥p∥2 + 0 + sin2 t · ∥v∥2

= cos2 t+ sin2 t = 1,

we obtain that γv : R → S2 is a smooth curve through p. Of course, the image of γv is a great
circle on S2.

Even more generally, we can define smooth maps between surfaces as follows.

Definition 1.33. Let S1 and S2 be two surfaces. A continuous map f : S1 → S2 is said to be
smooth, if for any parametrizations ψ : V → U ⊂ S1 and χ : W → X ⊂ S2 the map

χ−1 ◦ f ◦ ψ : ψ−1
(
f−1 (X)

)
−→ W (1.34)

is smooth. Just like in the case of functions, (1.34) is called the coordinate (or local) representation
of f .

Remark 1.35. Since parametrizations and charts contain the same amount of information, we
can also define smoothness of a map f : S1 → S2 in terms of charts as follows: f is smooth if
and only if for any chart (U, φ) on S1 and any chart (X, ξ) on S2 the map

ξ ◦ f ◦ φ−1 : R2 −→ R2

is smooth (on an open subset where defined). The map ξ ◦ f ◦ φ−1 is also called a coordinate
representation of f (with respect to charts (U, φ) and (X, ξ)).
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v

X

V W

f

f−1 (X)

χ−1 ◦ f ◦ ψ

ψ

χ

Figure 1.11: A smooth map between surfaces and its coordinate representation

Remark 1.36. Just like in the case of functions, it suffices to find two collections {ψi : Vi → Ui}
and {χj : Wj → Xj} of parametrizations such that⋃

i

Ui = S1 and
⋃
j

Xj = S2

and check that all coordinate representations χ−1
j

◦ f ◦ ψi are smooth.

Consider the antipodal map

a : S2 → S2, a (x) = −x.

For any (u, v) ∈ R2 we have

a ◦ ψN (u, v) = − 1

1 + u2 + v2
(
2u, 2v,−1 + u2 + v2

)
Since ψ−1

S : S2\{S} → R2 is given by

(x, y, z) 7−→
(

x

1 + z
,

y

1 + z

)
,
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we obtain

ψ−1
S

◦ a ◦ ψN (u, v) =
1

1 + 1−u2−v2
1+u2+v2

(
− 2u

1 + u2 + v2
,− 2v

1 + u2 + v2

)
= −1 + u2 + v2

2

(
2u

1 + u2 + v2
,

−2v

1 + u2 + v2

)
= − (u, v)

It follows in a similar manner, that ψ−1
S

◦ a ◦ ψS, ψ
−1
N

◦ a ◦ ψN , and ψ−1
N

◦ a ◦ ψS are also smooth.
Hence, a is smooth.

Proposition 1.37. Let h : R3 → R3 be a smooth map such that h (S1) ⊂ S2, where S1 and S2

are surfaces. Then h
∣∣
S1
: S1 → S2 is also smooth.

The proof of this proposition is similar to the proof of Proposition 1.30 and is left as an
exercise to the reader.

To construct a more interesting example, pick a polynomial

p (z) := zn + an−1z
n−1 + · · ·+ a1z + a0

with complex coefficients. Identifying R2 with C, we can view p as a smooth map R2 → R2.
Define f : S2 → S2 by

f (p) =

{
ψN ◦ p ◦ ψ−1

N (p) if p ̸= N,

N if p = N.
(1.38)

I claim that f is smooth. Indeed, since by the construction of f , the coordinate representation of
f with respect to the pair (R2, ψN) and (R2, ψN) of parametrizations (the first one on the source
of f , the second one on the target), is

ψ−1
N

◦ f ◦ ψN = ψ−1
N

◦ ψN︸ ︷︷ ︸
id

◦p ◦ ψ−1
N

◦ ψN︸ ︷︷ ︸
id

= p.

Hence f is smooth at each point p ∈ S2\{N}. To check that f is also smooth atN too, consider

ψS ◦ f ◦ ψ−1
S (z) =

{
ψS ◦ ψ−1

N
◦ p ◦ ψN ◦ ψ−1

S if z ̸= 0,

0 if z = 0.

We know that
ψSN (z) = ψS ◦ ψ−1

N (z) =
1

|z|2
z =

1

z · z̄
· z = 1

z̄

=⇒ ψNS (z) = ψ−1
SN (z) =

1

z̄
.

Hence, we compute

ψSN ◦ p ◦ ψNS (z) = ψSN

(
1

z̄n
+
an−1

z̄n−1
+ . . .+ a0

)
= ψSN

(
1 + an−1z̄ + . . .+ a0z̄

n

z̄n

)
=

zn

1 + ān−1z + . . .+ a0zn
, if z ̸= 0.

This yields that ψS ◦ f ◦ ψ−1
S is smooth even at z = 0, that is f is smooth everywhere on S (or,

simply, f is smooth).
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Theorem 1.39. Suppose f : S1 → S2 and g : S2 → S3 are smooth maps between surfaces.
Then g ◦ f : S1 → S3 is also smooth.

Proof. Pick a point p1 ∈ S1 and denote p2 := f (p1) ∈ S2 , p3 := g (p2) = g (f (p1)) ∈ S3.
Pick parametrizations

ψj : Vj −→ Uj ⊂ Sj.

P1
P2 P3

V1 V2 V3

f g

F G

ψ1 ψ2
ψ3

In a sufficiently small neighbourhood of p1 we have

ψ−1
3

◦ (g ◦ f) ◦ ψ1 = ψ−1
3

◦ g ◦ ψ2︸ ︷︷ ︸
G∈C∞

◦ψ−1
2

◦ f ◦ ψ1︸ ︷︷ ︸
F∈C∞

.

Hence, g ◦ f is smooth in a neighbourhood of p1. Since p1 was arbitrary, g ◦ f is smooth
everywhere. □

Remark 1.40. The proof shows that the coordinate representation of the composition is the
composition of coordinate representations.

Notice that Theorem 1.39 yields in particular the following: If γ : I → S1 is a smooth curve
and f : S1 → S2 is a smooth map, then f ◦ γ : I → S2 is also a smooth curve.

Definition 1.41. A smooth map f : S1 → S2 is called a diffeomorphism, if there exists a smooth
map g : S2 → S1 such that

g ◦ f = idS1 and f ◦ g = idS2

Example 1.42. The antipodal map a : S2 → S2 is a diffeomorphism.

Example 1.43. The hyperboloid H = {x2+ y2− z2 = 1} and cylinder C = {x2+ y2 = 1} are
diffeomorphic, that is there exists a diffeomorphism f : H → C. Explicitly, define

h : R3 −→ R3 by h (x, y, z) =

(
x√

1 + z2
,

y√
1 + z2

, z

)
Draft 15 January 2, 2024



Differential Geometry I

Clearly, h ∈ C∞ (R3;R3). If (x, y, z) ∈ H , then
(

x√
1+z2

)2
+
(

y√
1+z2

)2
= x2+y2

1+z2
= 1, that is

f := h
∣∣
H
: H → C is smooth.

Exercise 1.44. Show that the restriction of h−1 : R3 → R3 given explicitly by

h−1 (u, v, w) =
(√

1 + w2 u,
√
1 + w2 v, w

)
yields a smooth inverse of f .

Remark 1.45. A map f : S1 → S2 may fail to be a diffeomorphism in the following two ways:
either f−1 does not exist or f−1 exists but is not smooth.

Example 1.46 (A non-example). Consider a map

f : C −→ C, f (x, y, z) =
(
x, y, z3

)
,

which is smooth. The inverse f−1 : C → C exists:

f−1 (x, y, z) =
(
x, y, 3

√
z
)
.

It is continuous, but fails to be smooth.

Exercise 1.47. Compute a coordinate representation of f−1 and check that this fails to be
smooth indeed.

Example 1.48. Let S be a smooth surface and let ψ : V → U be any parametrization. Consider
U as a surface covered by the image of a single parametrization ψ. Then φ = ψ−1 exists and
is smooth as we have seen in Example 1.27. That is U is diffeomorphic to V, which is an open
subset of R2. Summing up, we see that any surface is locally diffeomorphic to an open subset
of R2.

Exercise 1.49.
(i) Show that the disc D :=

{
(x, y) ∈ R2 | x2+y2 < 1

}
is diffeomorphic to R2, that is there

exists a smooth bijective map f : D → R2 such that f−1 : R2 → D is also smooth.

(ii) Show that any smooth surface is locally diffeomorphic to R2, that is any point p ∈ S has
a neighbourhood U diffeomorphic to R2.

1.4 The tangent plane

Let S be a surface.

Definition 1.50. A vector v ∈ R3 is said to be tangent to S at p, if there exists a smooth curve
γ : (−ε, ε) → S such that

γ (0) = p and γ̇ (0) = v.

Notice that when computing the tangent vector of γ we think of γ as a curve in R3.
The set TpS of all vectors tangent to S at the point p is called the tangent space of S at p.
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Example 1.51. For S = S2 and an arbitrary point p we have the curve

γ : R → S2, γv (t) = cos t · p+ sin t · v,

where ∥v∥ = 1 and v ⊥ p just as in in Example 1.32. Then γ̇v (0) = v. Hence, v is tangent to
S2 at p.

In fact, any vector v which is orthogonal to p is tangent to S2 at p. Indeed, set λ := ∥v∥ and
v1 := λ−1v, and

γ : R → S2, γ(t) = γv1(λt).

Then γ(0) = p and γ̇(0) = λγ̇v1(0) = v.

Proposition 1.52. Let ψ : V → U be a parametrization such that ψ (u0, v0) = p. Then

TpS = ImD(u0,v0)ψ.

In particular, TpS is a vector space of dimension 2.

Proof. The proof consists of the following steps.

Step 1. We have ImD(u0,v0)ψ ⊂ TpS.

Assume v ∈ ImD(u0,v0)ψ. Then there exists a vector w ∈ R2 such that D(u0,v0)ψ (w) = v.
Consider the smooth curve β : (−ε, ε) → V

β (t) = (u0, v0) + t · w.

Then γ (t) := ψ ◦ β (t) is a smooth curve in S such that

γ (0) = ψ (β (0)) = ψ (u0, v0) = p and γ̇ (0) = D(u0,v0)ψ (w) = v.

Hence, v ∈ TpS.

Step 2. TpS ⊂ ImD (u0, v0)ψ

If v ∈ TpS, then there exists γ : (−ε, ε) → S such that γ (0) = p and γ̇ (0) = v. Can
assume Im γ ⊂ U by choosing ε smaller if necessary. If φ = ψ−1, then β (t) := φ ◦ γ (t) is a
smooth curve in V ⊂ R2 such that β (0) = (u0, v0). Denote w := β̇ (0) ∈ R2. Then we have

v = γ̇ (0) =
d

dt

∣∣∣
t=0

(
ψ0 ◦ β

)
(t) =

(
D(u0,v0)ψ

) (
β̇ (0)

)
= D(u0,v0)ψ (w) ∈ ImD(u0,v0)ψ.

Step 3. dimTpS = 2.

This follows immediately from the injectivity of D(u0,v0)ψ. □

Proposition 1.53. Pick p ∈ S and recall that there exists a neighbourhood W ⊂ R3 of p and a
smooth function φ : W → R such that

S ∩W = {q ∈ W |φ (q) = 0} and ∇φ (q) ̸= 0 ∀ q ∈ W.

Then TpS = ∇φ (p)⊥.
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Proof. If γ is any curve in S through p, then

φ ◦ γ (t) = 0 ∀t =⇒ d

dt

∣∣∣∣
t=0

φ (γ (t)) = 0.

Therefore, we obtain

0 =
d

dt

∣∣∣∣
t=0

φ (γ (t)) = ⟨∇φ (p) , γ̇ (0)⟩ =⇒ TpS ⊂ ∇φ (p)⊥ .

Since both TpS and ∇φ (p)⊥ are two-dimensional, these spaces must be equal in fact. □

Example 1.54. Set φ(x, y, z) =
(
x2 + y2 + z2 − 1

)
/2. Then φ−1(0) = S2 and

∇φ(p) = p ̸= 0 if p ∈ S2 =⇒ TpS
2 = p⊥.

This is consistent with Example 1.51.

Example 1.55. Set φ(x, y, z) =
(
x2 + y2 − z2 − 1

)
/2. If p = (x, y, z) ∈ H =: φ−1(0), then

∇φ (p) = (x, y,−z) ̸= 0 and therefore

TpH = (x, y,−z)⊥ =
{
v = (v1, v2, v3) ∈ R3 | xv1 + yv2 − zv3 = 0

}
.

Example 1.56. Set φ(x, y, z) :=
(
x2 + y2 − 1

)
/2, C = φ−1(0) ∋ p = (x, y, z). Then

TpC =
{
v = (v1, v2, v3) | xv1 + yv2 = 0, v3 is arbitrary

}
.

1.5 The differential of a smooth map
Just as in calculus of several variables, we wish to study smooth functions, or, more generally,
smooth maps, by approximating those by linear ones. This leads to the concept of the differential,
which we define first for the case of functions. The more general case of smooth maps is
considered below.

Definition 1.57 (Differential of a smooth function). Let S be a surface and f ∈ C∞ (S). Define
a map dpf : TpS → R as follows: for v ∈ TpS choose a smooth curve γ throught p with
γ̇ (0) = v and set

dpf (v) =
d

dt

∣∣∣
t=0
f ◦ γ (t) . (1.58)

Proposition 1.59. dpf is a well-defined linear map.

Proof. Pick a parametrization ψ : V → U ∋ p. Without loss of generality we can assume that
ψ−1(p) = 0 ∈ V.

If γ1 and γ2 are two curves through p such that γ̇1 (0) = v = γ̇2 (0), then for βj := ψ−1 ◦ γj
we have

γj (t) = ψ ◦ βj (t) =⇒ v = D0ψ
(
β̇1 (0)

)
= D0ψ

(
β̇2 (0)

)
.

Since D0ψ is injective, we obtain β̇1 (0) = β̇2 (0) =: w. Furthermore,

d

dt

∣∣∣
t=0
f ◦ γ1 (t) =

d

dt

∣∣∣
t=0

(
f ◦ ψ ◦ ψ−1 ◦ γ1 (t)

)
=

d

dt

∣∣∣
t=0

(
F ◦ β1 (t)

)
= D0F (w) .
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Likewise, we obtain

d

dt

∣∣∣
t=0
f ◦ γ2 (t) = D0F (w) =⇒ d

dt

∣∣∣
t=0

(f ◦ γ1 (t)) =
d

dt

∣∣∣
t=0

(f ◦ γ2 (t)) .

Hence, dpf is well-defined and, moreover, we have the equality

dpf ◦D0ψ = D0F,

where F := f ◦ ψ is the coordinate representation of f . Since both D0ψ and D0F are linear, so
is dpf . □

Exercise 1.60. Think of R2 as a surface in R3 (for example, as R2×{0} ⊂ R3). Let f : R2 → R2

be any smooth map. Show that the differential of f in the sense of Definition 1.57 coincides
with the one known from the analysis course.

Exercise 1.61. If h ∈ C∞ (R3) and f = h
∣∣
S

, then for all p ∈ S we have

dpf = Dph
∣∣
TpS

.

Definition 1.62. A point p ∈ S is called critical for f ∈ C∞ (S), if dpf = 0, that is dpf (v) = 0
for all v ∈ TpS.

Proposition 1.63. If p is a point of local maximum (minimum) for f , then p is critical for f .

Proof. If p is a point of local maximum for f , then for any curve γ through p, 0 is a point of
local maximum for f ◦ γ. Hence, d

dt

∣∣
t=0
f ◦ γ(t) = 0. □

Proposition 1.64. Let h, φ ∈ C∞ (R3). Assume ∇φ (p) ̸= 0 for any p ∈ S = φ−1 (0). If p ∈ S
is a point of local maximum for f = h

∣∣
S

, then

∇h (p) = λ∇φ (p) (1.65)

for some λ ∈ R.

Proof. Our hypothesis implies that S is a surface and TpS =
(
∇φ(p)

)⊥, see Example 1.9 and
Proposition 1.53. Hence,

dpf = 0 ⇐⇒ Dph
∣∣
TpS

= 0 ⇐⇒ ⟨v,∇h (p)⟩ = 0 ∀ v ∈ TpS.

In other words, ∇h(p) is orthogonal to TpS. However, TpS⊥ is one-dimensional and contains
∇φ(p) ̸= 0. This implies (1.65). □

Remark 1.66. This proof is in a sense more conceptual than the proof of Theorem 1.6.

More generally, for any f ∈ C∞ (S;Rn) the differential dpf : TpS → Rn is defined
by (1.58) too. This yields immediately the following: If f is written in components as f =
(f1, . . . , fn), then dpf can be written in components as

dpf =
(
dpf1, . . . , dpfn

)
.

Also, the differential is well-defined for maps f : Rn → S and is a linear map of the form
dpf : Rn → Tf(p)S. For maps f : S1 −→ S2 between surfaces we define

dpf : TpS1 −→ Tf(p)S2

essentially by the same rule: If γ̇ (0) = v ∈ TpS1, then dpf (v) := d
dt

∣∣
t=0

(f ◦ γ (t)). This yields
again a well-defined linear map as the reader can easily check.
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p
v

f (p)

f
dpf (v)

S2S1

Figure 1.12: The differential of a smooth map

Proposition 1.67. Let S1, S2, S3 be smooth surfaces. For any smooth maps f : S1 → S2 and
g : S2 → S3 and any point p ∈ S1 we have

Dp (g ◦ f) = Df(p)g ◦Dpf.

This also holds if any of Si is replaces by an open subset of Rn.

Proof. Let γ1 be any smooth curve in S1 through p. Denote γ2 = f ◦γ, which is a smooth curve
in S2 through f (p). If γ̇1 (0) = v1, then v2 := γ̇2 (0) = Dpf (v1) by the definition of Dpf .
Hence,

Dp (g ◦ f) (v1) =
d

dt

∣∣∣
t=0

(
g ◦ f ◦ γ1︸ ︷︷ ︸

γ2

(t)
)
=

d

dt

∣∣∣
t=0

(g ◦ γ2 (t)) = Df(p)g (v2)

= Df(p)g
(
Dpf (v1)

)
.

□

Corollary 1.68. If f : S1 → S2 is a diffeomorphism, then dpf : TpS1 → Tf(p)S2 is an isomorphism
for any p ∈ S1. □

Definition 1.69. A map f : S1 → S2 is called a local diffeomorphism if for any p ∈ S1 there
exists a neighbourhood U1 ⊂ S1 and a neighbourhood U2 ⊂ S2 of f (p) such that f : U1 → U2

is a diffeomorphism.

Theorem 1.70. Let f : S1 → S2 be a smooth map such that dpf : TpS1 → Tf(p)S2 is an
isomorphism for all p ∈ S1. Then f is a local diffeomorphism.

Proof. Pick any p ∈ S1 and parametrizations ψ1 : V1 → W1 ⊂ S1 and ψ2 : V2 → W2 ⊂ S2.
Without loss of generality we can assume that ψ1 (0) = p and ψ2 (0) = f (p).

Recall that the coordinate representation of f is F = ψ−1
2

◦ f ◦ ψ1, see Fig. 1.13. Hence, by
Proposition 1.67 we obtain d0F = df(p)ψ

−1
2

◦dpf ◦d0ψ1. Furthermore, since all of the following
linear maps

d0ψ1 : R2 −→ TpS1, df(p)ψ
−1
2 : Tf(p)S2 −→ R2, and dpf : TpS1 → TpS2

are isomorphisms, we conclude that d0F is an isomorphism too.
From the analysis course it is known that there exists a neighbourhood Ṽ1 ⊂ V1 of the

origin and a neighbourhood Ṽ2 ⊂ V2 of the origin such that F : Ṽ1 → Ṽ2 is a diffeomorphism.
Denoting U1 = ψ1

(
Ṽ1

)
and U2 = ψ2

(
Ṽ2

)
, we have

f
∣∣
U1

= ψ2 ◦ F ◦ ψ−1
1

∣∣
U1

: U1 → U2

is a diffeomorphism, since it is a composition of diffeomorphisms. □
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Figure 1.13: Illustration for the proof of Theorem 1.70

Remark 1.71. It follows from the proof of Theorem 1.70, that

dpf = d0ψ2 ◦ d0F ◦ dpψ
−1
1 ,

where both d0ψ2 and dpψ−1
1 are linear isomorphisms.

In particular, this implies that the following holds:

• dpf is injective ⇐⇒ Dψ1(p)F is injective;

• dpf is surjective ⇐⇒ Dψ1(p)F is surjective;

• dpf is an isomorphism ⇐⇒ Dψ1(p)F is an isomorphism.

Definition 1.72. For f ∈ C∞ (S1;S2) a point p ∈ S1 is called a critical point of f if dpf is not
surjective.

Since dimTpS1 = dimTf(p)S2, a simple argument from linear algebra yields:

dpf is non-surjective ⇐⇒ dpf is non-injective ⇐⇒ dpf is not an isomorphism. (1.73)

Notice, however, that Definition 1.72 makes sense in more general situations where, for example,
the target S2 (and/or the source S1) is replaced by Rn. However, (1.73) is false in general for
those more general cases.

To see that Definition 1.72 coincides with the previous one in the case of function, suppose
p is a critical point of a smooth function f : S1 → R in the sense of Definition 1.72. If there
exists v ∈ TpS1 such that dpf(v) ̸= 0, then the linearity of dpf yields immediately that dpf is
surjective. Hence, dpf is non-surjective if and only if it vanishes, cf. Definition 1.62.

Definition 1.74. A point q ∈ S2 is called a regular value of f , if any p ∈ f−1 (q) is a regular
(that is non-critical) point of f , i.e., if for all p ∈ f−1 (q) the differential dpf is surjective.

The argument demonstrating (1.73) yields also the following:

dpf is surjective ⇐⇒ dpf is injective ⇐⇒ dpf is an isomorphism.
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Example 1.75. Identify C with R2 and consider the map f : C → C, f (z) = zn, where
n ∈ Z, n ≥ 2. It is known from analysis that dzf : C → C can be identified with the map
h 7→ f ′ (z) · h. Hence, z is critical if and only if f ′ (z) = 0 ⇔ nzn−1 = 0 ⇔ z = 0. Hence, f
has a single critical point z = 0 and a single critical value, the zero. All other points are regular
and any non-zero value is also regular.

Viewing f as a map C \ {0} → C \ {0}, we obtain an example of a local diffeomorphism,
which is not a diffeomorphism (assuming n ≥ 2).

Theorem 1.76 (The fundamental theorem of algebra). Let q (z) = zn+an−1z
n−1+. . .+a1z+a0

be a polynomial of degree n ≥ 1 with complex coefficients. Then p has at least one complex
root.

Proof. First recall that the map f : S2 → S2,

f (p) =

{
N p = N,

ψN ◦ q ◦ ψ−1
N , p ̸= N,

is smooth. Indeed, the details of this claim are spelled on Page 14. The rest of the proof consists
of the following steps.

Step 1. f has at most n critical points (values).

Indeed, a point p ∈ S2\{N} is critical for f if and only if z := ψn (p) is critical for q. Hence,
in this case q′ (z) = 0, that is z is a root of the polynomial nzn−1+(n− 1) an−1z

n−2+ . . .+a1,
which can have at most (n− 1) roots.

Step 2. Denote by R (f) the set of regular values of f . Then for any r ∈ R (f) the set f−1 (r)
is finite and the map R (f) → Z≥0, r 7→ #f−1 (r) is constant.

Pick any r ∈ R (f) and any p ∈ f−1 (r). Then f (p) = r and dpf is an isomorphism.
Hence, by Theorem 1.70 there exists a neighbourhood Up of p and a neighbourhood Wr such
that f : Up → Wr is a diffeomorphism. In particular, f−1 (r) ∩ Up = {p}, that is f−1 (r) is
discrete. Since f−1 (r) is a closed subset of S2, f−1(r) is compact. But a compact discrete set
must be finite.

Denote f−1 (r) = {p1, . . . pm} and the corresponding neighbourhoods U1, . . . Um and
W1, . . . Wm. Set W := W1 ∩ . . . ∩ Wm and Ũj := f−1 (W) ∩ Uj . Then for each j ≤ m

the map f : Ũj → W is a diffeomorphism. In particular, for all r′ ∈ W there exists a unique
p′j ∈ Ũj such that f

(
p′j
)
= r′. Hence, #f−1 (r′) ≥ #f−1 (r) for all r′ ∈ W .

Furthermore, I claim that in fact #f−1 (r′) = #f−1 (r) for all r′ contained in some neigh-
bourhood of r. Indeed, arguing by contradiction, assume that there is a sequence r′i converging
to r with the following property: for each i there is some p′i ∈ f−1(r′i) such that p′i is not
contained in any of Ũ1, . . . , Ũm. By the compactness of S2, a subsequence of p′i converges
to some p. Then, by the continuity of f we must have f(p) = r so that p = pj for some
j ∈ {1, . . . ,m}. But then a subsequence of p′i must be contained in Ũj . This is a contradiction.

Thus, the function
R (f) −→ Z, r 7−→ #f−1 (r) (1.77)

is locally constant. However R (f) is the complement of a finite number of points in S2, hence
connected. Therefore (1.77) is (globally) constant.

Step 3. We prove this theorem.
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Pick any pairwise distinct points p1, . . . , pn+1 ∈ S2\{N} such that f (p1) , . . . , f(pn+1)
are also pairwise distinct. Since f has at most n critical values, at least one of those points is a
regular value of f and (1.77) does not vanish at this point. Hence, (1.77) vanishes nowhere on
R (f).

If the south pole S is a critical value of f , then f−1 (S) ̸= ∅, since f−1 (S) contains a
critical point. However,

f−1 (S) ̸= ∅ ⇐⇒ q−1 (0) ̸= ∅.

If S is a regular value, then Step 2 yields #f−1 (S) ≥ 1. This yields in turn q−1 (0) ̸= ∅, which
finishes this proof. □

1.6 Orientability
Let S ⊂ R3 be a (smooth) surface.

Definition 1.78. A (smooth) map v : S → R3 is called a (smooth) tangent vector field on S, if
v (p) ∈ TpS for all p ∈ S.

Definition 1.79. A (smooth) map n : S → R3 is called a (smooth) normal field on S, if n (p) ⊥
TpS for all p ∈ S.

Example 1.80. Set S = S2, n (x) = x. Then n is a normal vector field on S2.

Lemma 1.81. Let ψ : V → U ⊂ S be a parametrization. Then U admits a unit normal field n
on U, that is n (p) ⊥ TpS and |n (p) | = 1 holds for all p ∈ U.

Proof. Since ψ is a parametrization, for any p ∈ U there exists q ∈ V such that ψ (q) = p and
Dqψ : R2 → TpS = Im (Dqψ) is an isomorphism. Hence, Dqψ maps a basis of R2 onto a basis
of TpS. In particular, the image of the standard basis (∂uψ, ∂vψ)

∣∣
q

is a basis of TpS.
Define

n (p) =
∂uψ × ∂vψ

|∂uψ × ∂vψ|
,

where "×" means the cross-product in R3. This is well-defined, since ∂uψ × ∂vψ ̸= 0. □

Exercise 1.82. Check that n is a smooth normal field on U.

Lemma 1.83. If S is connected, then there are at most 2 non-equal unit normal fields on S.

Proof. Let n1 and n2 be unit normal fields. Since for any p ∈ S both n1(p) and n2(p) are
orthogonal to TpS and |n1|(p) = |n2(p)|, we must have n2 (p) = ±n1 (p).

Denote S± := {p ∈ S | n2 (p) = ±n1 (p)}. Then both S+ and S− are closed and S =
S+ ∪ S−. Hence, either

S+ = ∅ ⇐⇒ n2 (p) = −n1 (p) for any p ∈ S or
S− = ∅ ⇐⇒ n2 (p) = +n1 (p) for any p ∈ S.

□

Definition 1.84. A surface S is said to be orientable, if S admits a unit normal field.

It should be intuitively clear that any unit normal field "selects a side" of the surface. A
choice of the unit normal field ("a side of S") is called an orientation of S. Thus, any surface S
admits at most 2 distinct orientations.
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Proposition 1.85 (Preimages are orientable). If 0 is a regular value of φ : R3 → R, then S :=
φ−1 (0) admits a unit normal field.

Here, just like in the Definition 1.74, 0 is said to be the regular value of φ if for any p ∈ S =
φ−1 (0) we have

Dpφ : R3 −→ R is surjective ⇐⇒ ∇φ (p) ̸= 0,

since Dpφ (v) = ⟨∇φ (p) , v⟩, where v ∈ R3.

Proof. Since TpS = ∇φ (p)⊥, we see that ∇φ is a normal field. Since 0 is a regular value of φ,
∇φ vanishes nowhere on S. Hence, n (p) := ∇φ(p)

|∇φ(p)| is a unit normal field. □

Remark 1.86. In the definition of orientability, it is only important, that the normal field exists,
is non-vanishing and continuous. Smoothness can be deduced from this.

Example 1.87 (A non-example: the Möbius band). One can obtain the Möbius band from the
strip by gluing the opposite sides as shown on the figure.

gluing

L

Figure 1.14: The Möbius band from the strip

More formally, the Möbius band is the image of the map

Ψ: [0, 2π]× (−1, 1) −→ R3,

Ψ(u, v) =
((

2− v sin
u

2

)
sinu,

(
2− v sin

u

2

)
cosu, v cos

u

2

)
.

Exercise 1.88. Show that the image of Ψ is a surface indeed.

To see that the Möbius band is non-orientable, recall that we showed in Lemma 1.81 that
any point on a surface admits an orientable neighbourhood U. Moreover, it follows from the
proof that given 0 ̸= n0 ⊥ Tp0S at some p0 ∈ U, there is a unique orientation n of U such that
n (p0) =

n0

|n0| . With this understood, for all p ∈ L pick an orientable neighbourhood Up. Since
L is compact, there is a finite collection U1, . . . ,Un covering L. Choose a point p1 ∈ L ∩ U1

and a vector n1 ∈ Tp1S
⊥, |n1| = 1. This determines uniquely a normal field n on U1 such that

n (p1) = n1. If U2∩U1 ̸= ∅, then there exists a unique smooth extension of n to U1∪U2. After
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finitely many steps we obtain a normal field n on U1 ∪ . . . ∪ Un ⊃ L. However, as one travels
once along L, this normal field must change its direction, that is n (p1) = −n (p1), which is
impossible. Hence, the Möbius band does not admit a unit normal field, that is the Möbius band
is non-orientable.

Let S be a surface.

Definition 1.89. A collection A =
{
(ψa,Va,Ua) | a ∈ A

}
of parametrizations of S is said to

be an atlas, if
⋃
a∈AUa = S.

Recall that for a, b ∈ A the map

θab := ψ−1
a

◦ ψb : Vab = ψ−1
b (Ua ∩ Ub) −→ R2

is called the change of coordinates map.

Definition 1.90. An atlas A on S is said to be oriented, if det
(
D(u,v)θab

)
> 0 for any (u, v) ∈

Vab.

Example 1.91. For S = S2,A =
{(
ψN ,R2, S2\{N}

)
,
(
ψS,R2;S2\{S}

)}
is an atlas. We

have
θSN (u, v) =

1

u2 + v2
(u, v)

A computation yields det (DθSN) < 0, so that A is not an oriented atlas.
Consider, however

B =
{(

ψN ,R2, S2\{N}
)
,
(
ψ̂S,R2, S2\{S}

)}
,

where ψ̂S (u, v) = ψS (−u, v) = ψS ◦ σ (u, v), where σ (u, v) = (−u, v). Then

θ̂SN = ψ̂−1
S

◦ ψN = (ψS ◦ σ)−1 ◦ ψN = σ−1 ◦ θSN = σ ◦ θSN ,

since σ−1 = σ. By the linearity of σ, we have Dθ̂SN = σ ◦DθSN , which yields

detDθ̂SN = detσ · detDθSN > 0,

since detσ = −1 and detDθSN < 0. Thus, B is an oriented atlas on S2.

Proposition 1.92. A surface S is orientable if and only if S admits an oriented atlas.

Proof. The proof consists of the following steps.

Step 1. If S is orientable, then S admits an oriented atlas.

Choose a unit normal field n on S and an atlas A on S. Define a new atlas B as follows: If
ψa : Va → Ua belongs to A and det

(
∂uψa, ∂vψa, n (ψa (u, v))

)
> 0, then (ψa,Va,Ua) belongs

to B. If det
(
∂uψa, ∂vψa, n (ψa (u, v))

)
< 0, then

(
ψa ◦ σ, σ (Va) ,Ua

)
=
(
ψ̂a, V̂a,Ua

)
belongs

to B, where σ : R2 → R2, σ (u, v) = (−u, v). This yields

det
(
∂uψ̂a, ∂vψ̂a, n

(
ψ̂a(u, v)

))
= det

(
− ∂uψa, ∂vψa, n

(
ψa (u, v)

))
> 0.

Therefore, we obtain:
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(a) Suppose both ψa : Va −→ Ua and ψb : Vb −→ Ub belong to B. Denote by (x1, x2) and
(y1, y2) coordinates on Va and Vb respectively. Write the transition map θ = θab : Vb −→
Va, which is defined on an open subset of Vb, in components as θ = (θ1, θ2). Then from
ψb = ψa ◦ θ we obtain

∂y1ψb = ∂x1ψa (θ (y)) ∂y1θ1 + ∂x2ψa (θ (y)) ∂y1θ2,

∂y2ψb = ∂x2ψa (θ (y)) ∂y2θ1 + ∂x2ψa (θ (y)) ∂y2θ2.

In matrix notations this can be written more briefly as

(
∂y1ψb, ∂y2ψb

)
=
(
∂x1ψa, ∂x2ψb

)
· ∂yθ, where ∂yθ =

(
∂y1θ1 ∂y2θ1
∂y1θ2 ∂y2θ2

)
is the Jacobi matrix of θ = θab. Hence,

(
∂y1ψb, ∂y2ψb, n

)
=
(
∂x1ψa, ∂x2ψa, n

) ∂yθ
0
0

0 0 1

 ,

which yields in turn

det (∂y1ψb, ∂y2ψb, n) = det (∂x1ψa, ∂x2ψa, n) · det
(
∂yθ

1

)
. (1.93)

By the assumption, we have det (∂y1ψb, ∂y2ψb, n) > 0 and det (∂x1ψa, ∂x2ψa, n) > 0.
Hence, using (1.93) and

det

(
∂yθ

1

)
= det (∂yθ)

we obtain det (∂yθ) > 0.

(b) If ψ̂a and ψ̂b belong to B, essentially the same computation as above yields

det (∂yθab) > 0.

Furthermore,

ψb = ψa ◦ θab =⇒ ψb ◦ σ = ψa ◦ θab ◦ σ = (ψa ◦ σ) ◦ σ ◦ θab ◦ σ

where ψb ◦ σ = ψ̂b and ψa ◦ σ = ψ̂a. Hence, the change of coordinates map between ψ̂a
and ψ̂b is θ̂ab := σ ◦ θab ◦ σ. This yields

det
(
∂yθ̂ab

)
= detσ · det ∂yθab · detσ = (detσ)2 det ∂yθab > 0.

(c) Suppose finally that ψa and ψ̂b belong to B. By the same argument as above, we obtain
det (∂yθab) < 0. If θ̂ab denotes the change of coordinates between ψa and ψ̂b, then

θ̂ab = θab ◦ σ =⇒ det ∂yθ̂ab = det (∂yθab) · detσ > 0,

since both det (∂yθab) and detσ are negative.

Thus, B is an oriented atlas.

Step 2. If S admits an oriented atlas, then S admits a unit normal field.
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Let A be an oriented atlas on S and ψa : Va → Ua a parametrization from A. If ψa (q) =
p ∈ Ua, define n (p) by

n (p) =
∂uψa × ∂vψa
|∂uψa × ∂vψa|

∣∣∣∣
q

.

Assume ψb is another parametrization from A such that p ∈ Ub. Then ψb = ψa ◦ θ, where
θ = θab, so that(
∂y1ψb, ∂y2ψb

)
= (∂x1ψa, ∂x2ψb) · ∂yθ =⇒ ∂y1ψb × ∂y2ψb = det (∂yθ) · ∂x1ψa × ∂x2ψb,

where det
(
∂yθ
)
> 0. Hence n (p) does not depend on the choice of parametrization near p.

Since n is smooth in a neighbourhood of p, n is smooth everywhere. □

1.7 Partitions of unity
Recall that the function λ : R → R

λ (t) =

{
0 if t ≤ 0,

e−
1
t if t > 0

is smooth.

t

λ

Figure 1.15: The graph of λ

For any fixed r > 0 and all t ∈ R we have

λ (t) + λ (r − t) > 0,

because λ (t) is positive for t > 0 and λ (r − t) is positive for t < r. Define

χ̂r (t) :=
λ (r − t)

λ (t) + λ (r − t)
,

which is smooth everywhere on R. Denote also

χr (t) := χr (t− 1)

Lemma 1.94. For any point p ∈ Rn and any neighbourhood U ∋ p there exists a neighbourhood
V ⊂ U and ρ ∈ C∞ (Rn) such that the following holds:
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t

χ̂r

1

r

Figure 1.16: The graph of χ̂r

t

χr

1 1 + r

Figure 1.17: The graph of χr

• 0 ≤ ρ (x) ≤ 1 for all x ∈ Rn;

• ρ
∣∣
V
≡ 1 and ρ

∣∣
Rn\U ≡ 0.

Proof. For any R > 0, consider

ρ (x) := χ1

(
|x− p|
R

)
.

U

Figure 1.18: Schematic graph of ρ

If B2R (p) ⊂ U, then ρ vanishes outside of B2R (p), so vanishes outside of U. Also, ρ (x) ≡
1 on B2R (p) and ρ ∈ C∞. Here B2R (p) is the ball of radius 2R centered at p. □

Definition 1.95. For a continuous function f on a topological space X define the support of f
by

supp f := {x ∈ X | f (x) ̸= 0}.
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Notice in particular, that for x /∈ supp f we have f (x) = 0. However, a function may still
have zeros in its support. For example, suppλ = [0,+∞) so that 0 ∈ suppλ and λ (0) = 0.

In fact, unwinding the definition in full details, we obtain that x ∈ supp f if and only if
there exists a sequence xn → x such that f(xn) ̸= 0. In other words,

x /∈ supp f ⇐⇒ ∃ a neighbourhood U of x such that f
∣∣
U
≡ 0.

Example 1.96. If ρ is as in the above lemma, then supp ρ ⊂ U.

Example 1.97. For f (x) = |x|2 − 1, f : Rn → R, supp f = Rn.

Definition 1.98. A (smooth) partition of unity on Rn is a family of smooth functions {ρα | α ∈
A} such that

(i) 0 ≤ ρα (x) ≤ 1 for all x ∈ Rn and all α ∈ A;
(ii) For any x ∈ Rn the set

{
α ∈ A | ρα (x) ̸= 0

}
is finite;

(iii)
∑

α∈A ρα (x) = 1 for all x ∈ Rn.

Remark 1.99. More precisely, (ii) in the above definition should be replaced by the following
condition: ∀x ∈ Rn there exists a neighbourhood V ∋ x such that the set {α ∈ A | supp ρα ∩
V ̸= ∅} is finite. However, we consider mostly finite partitions of unity so that this condition
(and therefore, also (ii)) will be satisfied automatically.

Example 1.100 (A partition of unity on R). Consider
{
ρ̂j (x) | j ∈ Z

}
, where ρ̂j (x) =

χ1 (|x− j|). Notice that supp ρ̂j ⊂ [j − 2, j + 2] so that the function ρ̂ (x) :=
∑

j∈Z ρ̂j (x)
well-defined, smooth and positive everywhere on R. Hence,{

ρj = ρ̂j / ρ̂ | j ∈ Z
}

is a partition of unity on R1.

ρ̂j

j j + 2

Figure 1.19: The schematic graph of ρj

Partitions of unity for surfaces are defined just like for Rn .

Theorem 1.101 (Existence of a partition of unity). Let U = {Uα | α ∈ A} be any open
covering of a surface S. Then there exists a partition of unity {ρβ | β ∈ B} such that for each
β ∈ B there exists an α ∈ A so that

supp ρβ ⊂ Uα.

Proof. The proof is given for compact surfaces only.
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Step 1. Let S be any surface. For any p ∈ S and any open subset W ⊂ S such that p ∈ W ,
there exist ρ ∈ C∞ (S) such that

(i) 0 ≤ ρ (q) ≤ 1 for q ∈ S;

(ii) supp ρ ⊂ W ;

(iii) There exists an open subset X ⊂ W such that p ∈ X and ρ
∣∣
X
≡ 1.

Let (U, φ) be a chart on S such that φ (p) = 0 ∈ V ⊂ R2 and U ⊂ W . Pick a function
ρ̂ ∈ C∞ (R2) such that 0 ≤ ρ̂ ≤ 1, ρ̂

∣∣
Br(0)

≡ 1, and ρ̂
∣∣
R2\B2r(0)

≡ 0 for some r > 0 such that
B2r (0) ⊂ V. Define

ρ (p) :=

{
ρ̂ ◦ φ (p) if p ∈ U,

0 otherwise.

Then ρ is smooth everywhere and with X := φ−1 (Br (0)) satisfies (i)–(iii).

Remark 1.102. Alternatively, one can first define a suitable function ρ̃ on a neighbourhood of p
in R3 and define ρ as the restriction of ρ̃ to S.

Remark 1.103. Any function satisfying Properties (i)–(iii) of Step 1 is called a bump function.

Step 2. We prove this theorem assuming S is compact.

Pick any Uα and any p ∈ Uα. By Step 1, there exists Xp,α ⊂ Uα and a function ρ̂p,α
satisfying (i)–(iii).

Consider the family
{
Xp,α | p ∈ S, α ∈ A

}
, which is an open covering of S. By

the compactness of S, there exists a finite subcovering
{
Xp1,α1 , . . . , Xpn,αn

}
. To simplify

notations, redenote Xj := Xpj ,αj
and ρ̂j := ρ̂pj ,αj

so that ρ̂j
∣∣
Xj

≡ 1. Just as in Example 1.100,
we have

ρ̂ (p) :=
n∑
j=1

ρ̂j (p) > 0

for any p ∈ S. Then ρj := ρ̂j / ρ̂ is a partition of unity on S. Moreover, supp ρj = supp ρ̂j ⊂
Uαj

. □

Remark 1.104. A partition of unity as in the above theorem is called subordinate to U .

Example 1.105. Consider the case S = S2 with the covering U = {S2\{N}, S2\{S}). Albeit
the above theorem yields a partition of unity subordinate to U , we can construct this by hands
as follows. Let ρ be a bump function on R2 such that ρ

∣∣
B1(0)

≡ 1 and supp ρ ⊂ B2 (0). Define

ρN := ρ ◦ φN and ρS := 1− ρN .

Then {ρN , ρS} is the partition of unity we are looking for.

1.8 Integration on surfaces
The aim of this section is to define a map

∫
: C∞ (S) −→ R with "the usual" properties of the

integral, e.g. ∫
S

(λf + µg) = λ

∫
S

f + µ

∫
S

g λ, µ ∈ R f, g ∈ C∞ (S) . (1.106)
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To this end, assume that S is compact and choose an atlas A = {(Uα, φα) | α ∈ A} on S.
Let {ρj | j = 1, . . . , J} be a partition of unity on S such that supp ρj ⊂ Uαj

=: Uj . For any
f ∈ C∞ (S) we have

f = f · 1 =
J∑
j=1

f · ρj =
∑
j

fj,

where fj := f · ρj and supp fj ⊂ supp ρj ⊂ Uj . Hence, by (1.106) it suffices to define
∫
S
fj ,

that is we want to define
∫
S
f provided supp f ⊂ U, where (U, φ) is a chart.

Viewing φ as an identification between U and V ⊂ R2, we can identify f with its coordinate
representation

F := f ◦ φ−1 = f ◦ ψ : V −→ R.

Then F vanishes outside of φ−1 (supp f), which is compact.

V

F

φ−1 (supp f) ⊃ suppF

Figure 1.20: The coordinate representation of f

It is tempting to define ∫
S

f :=

∫
R2

F (u, v) du dv. (1.107)

Notice that the integrand on the right hand side of the above equality vanishes outside of a
compact set so that in fact we do not need to worry about the convergence of this integral. It
may happen, however, that there is another chart

(
Û, φ̂

)
on S such that supp f ⊂ Û. To show

that
∫
S
f is well-defined, we must show the equality∫

R2

F (u, v) du dv
?
=

∫
R2

F̂ (x, y) dx dy, (1.108)

where F̂ = f ◦ φ̂−1 is the coordinate representation of f with respect to φ̂.
Let θ = φ ◦ φ̂−1 ⇔ (u, v) = θ (x, y) denote the change of coordinates map. Then

F̂ = f ◦ φ̂−1 = f ◦ φ−1 ◦ φ ◦ φ̂−1 = F ◦ θ,

so that (1.108) is equivalent to∫
R2

F (u, v) du dv
?
=

∫
R2

F ◦ θ (x, y) dx dy

The last equality is false in general, since by a well-known theorem from analysis we have∫
R2

F (u, v) du dv =

∫
R2

F ◦ θ (x, y) | detDθ|dx dy.
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Thus, our naïve approach to define
∫
S
f by (1.107) does not work in general.

To solve this problem, recall the following fact. Suppose V ⊂ R3 is a bounded open set
such that S := ∂V is a smooth oriented surface. Then by the divergence theorem we have∫

V

div v =

∫
S

⟨v, n⟩ dS,

where n is the unit normal field pointing outwards. If ψ = ψ (u, v) is a parametrization of S,
the right hand side is defined by ∫

⟨v, n⟩|∂uψ × ∂vψ| du dv.

Following this hint, for f ∈ C∞ (S) with supp f ⊂ U, where U is a coordinate chart, we define∫
S

f :=

∫
R2

F (u, v) |∂uψ × ∂vψ|du dv. (1.109)

Then, if
(
Û, φ̂

)
is another chart just like above and θ = φ ◦ φ̂−1 = ψ−1 ◦ ψ̂, we have

ψ̂ = ψ ◦ θ =⇒
(
∂xψ̂, ∂yψ̂

)
= (∂uψ, ∂vψ) ·Dθ

=⇒ |∂xψ̂ × ∂yψ̂| = |∂uψ × ∂vψ| · | detDθ|.

Hence, we have∫
R2

F̂ (x, y) |∂xψ̂ × ∂yψ̂|dx dy =

∫
R2

F ◦ θ (x, y) |∂uψ × ∂vψ| | detDθ| dx dy

=

∫
R2

F (u, v) |∂uψ × ∂vψ|du dv.

That is (1.109) does not depend on the choice of the parametrization of S.

Definition 1.110. Let S be a compact surface and f a smooth function on S. Pick an atlas
U =

{
(Uα, φα)

}
and a finite partition of unity {ρj | 1 ≤ j ≤ J} subordinate to U . Denote by

Fj the coordinate representation of fj := ρj · f . Then the integral of f over S is defined by∫
S

f :=
∑
j

∫
S

fj =
∑
j

∫
R2

Fj (u, v) |∂uψj × ∂vψj| du dv,

where supp ρj ⊂ Uj = Uα(j) and ψj = φ−1
α(j).

Proposition 1.111.
∫
S
f is well-defined, that is

∫
S
f does not depend on the choice of an atlas.

Proof. Let Û =
{(

Ûβ, φ̂β
)
| β ∈ B

}
be another atlas on S. Choose a partition of unity

{µk | k = 1, . . . , K} subordinate to Û . We need to show that∑
j

∫
S

(ρjf)
?
=
∑
k

∫
S

(µkf) . (1.112)

Notice that {λjk := ρjλk | j = 1, . . . , J, k = 1, . . . , K} is also a partition of unity and suppλjk ⊂
Uj ∩ Ûk.
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With this understood, for a fixed j consider

K∑
k=1

∫
S

λjkf =

∫
S

(
ρj

K∑
k=1

µkf

)
=

∫
S

ρjf,

where the first equality follows by the linearity of the integral on the space of compactly
supported functions on R2. Summing the above equality over j, we arrive at

J∑
j=1

K∑
k=1

∫
S

λjkf =
J∑
j=1

∫
S

(
ρj

K∑
k=1

µkf

)
=

J∑
j=1

∫
S

ρjf.

Similarly, we have

K∑
k=1

J∑
j=1

∫
S

λjkf =
∑
k

∫
S

(
µk

J∑
j=1

ρjf

)
=
∑
k

∫
S

µkf.

Comparing the above two equalities we see that (1.112) holds indeed. □

It follows immediately from the definition that
∫
S

has the usual properties known from the
analysis course, for example:

•
∫
S
(λf + µg) = λ

∫
S
f + µ

∫
S
g;

• f ≥ 0 =⇒
∫
S
f ≥ 0;

•
∫
S
f = 0 and f ≥ 0 =⇒ f ≡ 0

and so on, where in the last property I assume that f is at least continuous.

Example 1.113. Let f : S2 −→ R be any (smooth) function. Let U =
{
S2\

{
N
}
, S2\ {S}

}
be just as in Example 1.105. Choose ε > 0 and set

ρεN (p) := ρ (εφN (p)) , and ρεS := 1− ρεN ,

where ρ is just as in Example 1.105. Notice the following:

ρ
∣∣∣
B1(0)

≡ 1 =⇒ ρεN

∣∣∣
φ−1
N (Bε−1 (0))

≡ 1,

ρ
∣∣∣
R2\B2(0)

=⇒ ρεN

∣∣∣
S2\φ−1

N (B2ε−1 (0))
≡ 0.

If FN = f ◦ ψN and FS := f ◦ ψS are coordinate representations of f , then by the definition of
the integral we have∫

S

f =

∫
R2

(ρεN ◦ ψN (u, v))FN (u, v) |∂uψN × ∂vψN |du dv

+

∫
R2

(ρεS ◦ ψS (u, v)) · FS (u, v) |∂uψS × ∂vψS|du dv

=

∫
R2

ρ (εu, εv)FN (u, v) |∂uψN × ∂vψN |du dv

+

∫
R2

ρεS ◦ ψS (u, v)FS (u, v) |∂uψS × ∂vψS|du dv.

The last term converges to 0 as ε→ 0, since
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• the measure of the support of ρεS ◦ ψS converges to zero;

• the integrand is uniformly bounded with respect to ε.

For the first term, we have∫
R2

ρ (εu, εv)FN (u, v) |∂uψN × ∂vψN |du dv

=

∫
Bε−1(0)

FN (u, v) |∂uψN × ∂vψN |du dv

+

∫
B2ε−1(0)\Bε−1(0)

ρ (εu, εv)FN (u, v) |∂uψN × ∂vψN |du dv.

The last summand of this expression converges to zero, since

• |ρ (εu, εv)FN (u, v) | ≤ sup
S2

|f |;

•
∫
B2ε−1 (0)\Bε−1 (0)

|∂uψ × ∂vψ|du dv ≤ Area
(
S2 \ ψN(Bε−1 (0))

)
→ 0.

Summing up, we obtain ∫
S2

f =

∫
R2

FN (u, v) |∂uψN × ∂vψN | du dv (1.114)

just as it is well-known from the analysis course.
Of course, a similar argument yields also∫

S2

f =

∫
R2

FS (u, v) |∂uψS × ∂vψS| du dv. (1.115)

The reader should check directly that the right hand sides of (1.114) and (1.115) are equal
indeed.

Theorem 1.116. Let h : S1 → S2 be a diffeomorphism, where S1 and S2 are compact surfaces.
Then for any f ∈ C∞ (S) we have∫

S2

f =

∫
S1

(f ◦ h) · | det dh|. (1.117)

To explain the right hand side of (1.117), let V and W be Euclidean vector spaces such that
dimV = dimW = n. Choose an orthonormal basis e = (e1, . . . , en) of V and an orthonormal
basis g = (g1, . . . , gn) of W. A linear map φ : V → W can be represented by a matrix Aφ =
(aij) ∈Mn (R), where

φ (ei) =
n∑
j=1

aijgj ⇐⇒ (φ (e1) , . . . , φ (en)) = (g1, . . . , gn) · A ⇐⇒ φ (e) = g · A.

If e′ is another basis of V, then there exits an orthogonal n× n matrix B such that

e′ = e ·B ⇐⇒ e′i =
n∑
j=1

bijej.
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Similarly, if g′ is another basis of W , then there exists an orthogonal n × n matrix C = (cij)
such that

g′ = g · C ⇐⇒ g′i =
n∑
j=1

cijgj.

Let A′
φ be the matrix of φ with respect to e′ and g′. Then

φ (e′) = g′ · A′
φ = gCA′

φ ⇐⇒ φ (e ·B) = φ (e) ·B = g · AφB
=⇒ CA′

φ = AφB =⇒ A′
φ = C−1AφB.

Therefore,

detA′
φ = det

(
C−1

)
detAφ detB = ± detAφ =⇒ | detA′

φ| = | detAφ|,

since both det (C−1) and detB equal to ±1 because B and C are orthogonal. That is for any
linear map φ : V → W between Euclidean spaces | detφ| := | detAφ| is well-defined.

Since for any p ∈ S1 both TpS1 and Th(p)S2 are Euclidean, | det dh| is a well-defined
function on S1.

Proof of Theorem 1.116. Let U2 = {(Uα, φα) | α ∈ A} be an atlas on S2. Pick a partition of
unity {ρj | j = 1, . . . , n} on S2 subordinate to U2. Then U1 = {(h−1 (Uα) , ξα := φα ◦ h) | α ∈ A}
is an atlas on S1 and {ρj ◦ h | j = 1, . . . , n} is a partition of unity subordinate to U1. If supp ρj ⊂
Uαj

=: Uj , denote ψj = φ−1
j , ξj = φαj

◦ h and νj = ξ−1
j = h−1 ◦ ψj . Hence,

ψj = h ◦ νj =⇒ ∂uψj = dh (∂uυj) and ∂vψj = dh (∂vυj)

=⇒ |∂uψj × ∂vψj| = | det dh| |∂uνj × ∂vνj|.
(1.118)

The last equality follows from the following fact: If E ⊂ R3 is a plane spanned by two vectors
v and w, for any A ∈ End(E) we have (Av)× (Aw) = (detA) · v × w.

Uj

h

R2

νj ξj ψj
φj
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Thus, we have∫
S1

(ρj ◦ h) · (f ◦ h) · | det dh| =
∫
R2

(
ρj ◦ h ◦ ξ−1

j

)
·
(
f ◦ h ◦ ξ−1

j

)
· | det dh| · |∂uνj × ∂vνj|

=

∫
R2

(ρj ◦ ψj) · (f ◦ ψj) |∂uψj × ∂vψj|

=

∫
S2

ρj · f,

where the second equality follows from (1.118). Summing up by j, we obtain (1.117). □

Remark 1.119. Notice that (1.117) is nothing else but a fancy restatement of the theorem about
the change of coordinates for the integration, which is well-known from the analysis course.

1.9 Quadratic forms on surfaces
Definition 1.120. A Riemannian metric on a smooth surface S is a family of scalar products{
⟨·, ·⟩p | p ∈ S

}
, where ⟨·, ·⟩p is a scalar product on TpS, such that ⟨·, ·⟩p depends smoothly on

p.

To explain, let ψ : V → U be a parametrization. If q ∈ V and p = ψ (q), then TpS has a
basis (∂uψ, ∂vψ). Hence, the scalar product ⟨·, ·⟩p is represented by its Gram matrix

M =

(
E F
F G

)
, where

E = ⟨∂uψ, ∂uψ⟩p ,
F = ⟨∂uψ, ∂vψ⟩p ,
G = ⟨∂vψ, ∂vψ⟩p .

We say, that ⟨·, ·⟩p depends smoothly on p, if all 3 functions E,F,G are smooth on U (where
they are defined).

Example 1.121. For any p ∈ S we have TpS ⊂ R3. Since R3 is equipped with the standard
scalar product.

⟨x, y⟩st := x1y1 + x2y2 + x3y3

we can restrict ⟨·, ·⟩st to TpS to obtain a scalar product on TpS. This is a Riemannian metric on
S, since

E (u, v) = ⟨∂uψ, ∂uψ⟩S = ⟨∂uψ, ∂uψ⟩st
is a smooth function of (u, v) (and similarly for F and G).

This particular Riemannian metric on S is called the first fundamental form of S in the
classical theory of surfaces.

Exercise 1.122. Let ⟨·, ·⟩ be the first fundamental form of S and f : S → S be a diffeomorphism.
For v, w ∈ TpS define a new scalar product

⟨v, w⟩f := ⟨dpf (v) , dpf (w)⟩f(p)

where dpf (v) ∈ Tf(p)S and dpf (w) ∈ Tf(p)S. Show that ⟨·, ·⟩f is a Riemannian metric on S.
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For the sake of simplicity of exposition, assume S is oriented and let n be the unit normal
field. We can regard n as a smooth map

n : S −→ S2,

which is called the Gauss map. Then for all p ∈ S we have

dpn : TpS −→ Tn(p)S
2 = n (p)⊥ = TpS.

This linear map is called the shape operator of S at p.
As a linear map in a 2-dimensional vector space, the shape operator has two invariants:

K (p) := det (dpn) and H (p) := −1

2
tr (dpn) .

Definition 1.123. K (p) is called the Gauss curvature and H (p) is called the mean curvature
of S at p.

Notice that both K and H are smooth functions on S.

Example 1.124. For the plane S = R2 ≡ R2 × {0} ⊂ R3 the Gauss map is constant. Hence,
the shape operator vanishes and therefore both K and H vanish too.

Example 1.125. For the sphere of radius r

S2
r :=

{
x ∈ R3 | |x|2 = r2

}
the Gauss map is given by n (p) = 1

r
p. Hence, for the shape operator we obtain: dpn (v) = 1

r
v.

Thus, dpn = 1
r
id ⇒ K (p) = 1

r2
is constant on S2.

Notice that for r → ∞, we have K (p) → 0 and the sphere looks more and more flat in
a neighbourhood of each point (that is why our Earth is "flat"). Thus, we can view the Gauss
curvature as a measure of flatness of S.

Lemma 1.126. The shape operator is symmetric, that is for any p ∈ S and any v, w ∈ TpS we
have

⟨dpn (v) , w⟩ = ⟨v, dpn (w)⟩ .

Proof. Let ψ : V → S be a parametrization such that ψ (0) = p. Then (∂uψ, ∂vψ)
∣∣∣
(u,v)=0

is a

basis of TpS. Hence, it suffices to show the equality〈
dpn (∂uψ) , ∂vψ

〉
=
〈
∂uψ, dpn (∂vψ)

〉
, (1.127)

where the derivatives are evaluated at the origin. To this end, notice that by the definition of n
we have 〈

n (ψ (u, v)) , ∂uψ (u, v)
〉
= 0 ∀ (u, v) ∈ V.

Differentiating this equality with respect to v and setting (u, v) = 0, we obtain〈
dpn (∂uψ) , ∂vψ

〉
+
〈
n (p) , ∂uvψ

〉
= 0.

Similarly, we obtain 〈
∂uψ, dpn (∂vψ)

〉
+
〈
∂uvψ, n (p)

〉
= 0.

Subtracting these two equalitites, we arrive at (1.127). □
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Definition 1.128. The bilinear symmetric map

II : TpS × TpS −→ R, (v, w) 7−→ ⟨v, dpn (w)⟩p

is called the second fundamental form of S at p.

Notice that II is smooth, that is for any parametrization ψ the functions

II
(
∂uψ (u, v) , ∂uψ (u, v)

)
, II

(
∂uψ, ∂vψ

)
, II

(
∂vψ, ∂vψ

)
are smooth in (u, v).

Remark 1.129. One can recover the shape operator from the second fundamental form, that is
these two objects contain the same amount of information.

Remark 1.130. Observe that the shape operator and the second fundamental form depend on
the choice of orientation. If one changes the orientation to the opposite one, the sign of the
fundamental form changes too. However, this does not affect the Gauss curvature. In particular,
the Gauss curvature is well-defined for non-orientable surfaces too, since any surface is locally
orientable.

1.10 The geometric meaning of the sign of the Gauss curvature
Let p ∈ S be a critical point of f ∈ C∞ (S). Given v ∈ TpS, pick a smooth curve γ : (−ε, ε) →
S such that γ (0) = p and γ̇ (p) = v.

Definition 1.131. The map

Hesspf : TpS −→ R, Hesspf (v) =
d2

dt2

∣∣∣
t=0

(f ◦ γ (t))

is called the Hessian of f at p.

Proposition 1.132.

(i) Hesspf is a well-defined quadratic map.
(ii) If p is a point of local minimum, then Hessp (f) (v) ≥ 0 for all v ∈ TpS. If p is a point of

local maximum, then Hesspf (v) ≤ 0.
(iii) If Hesspf (v) > 0 for all v ̸= 0, then p is a point of local minimum. If Hesspf (v) < 0 for

all v ̸= 0, then p is a point of local maximum.

Proof. Choose a parametrization ψ such that ψ (0) = p and denote

F := f ◦ ψ and β := φ ◦ γ = ψ ◦ γ.

Then if β (t) =
(
β1 (t) , β2 (t)

)
, we have

f ◦ γ (t) = F ◦ β (t) = F
(
β1 (t) , β2 (t)

)
=⇒

d

dt
f ◦ γ (t) = ∂uF (β (t)) β′

1 (t) + ∂vF (β (t)) β′
2 (t) .

Notice that β (0) = 0 and ∂uF (0) = 0 = ∂vF (0).

Draft 38 January 2, 2024



Differential Geometry I

γ

R2

β

f
R

ψ
F

Furthermore we have

d2

dt2

∣∣∣
t=0
f ◦ γ (t) = ∂2uuF (0) β′

1 (0)
2 + 2∂2uvF (0) β′

1 (0) β
′
2 (0) + ∂2vvF (0) β′

2 (0)
2 . (1.133)

Recalling that β′ (0) = dpφ (v), we see that the right-hand-side of (1.133) depends only on
β′ (0) and not on the choice of γ. Moreover, (1.133) also shows that Hesspf (v) is a quadratic
form in v.

In fact the above computation shows that Hesspf corresponds to the Hessian of the local
representation F of f in the following sense: The diagram

TpS

R2

Rdpφ

Hesspf

Hessφ(p)F

commutes. That is we can identify Hesspf with Hessφ(p)F by means of the isomorphism
dpφ : TpS → R2. This immediately implies (ii) and (iii). □

Let Ha : R3 → R, Ha(x) = ⟨x, a⟩, be the height function in the direction of a ∈ R3, a ̸= 0.
Denote by ha the restriction of Ha to S, see Example 1.26. Recall that p is a critical point of
ha if and only if TpS ⊥ a. For example, for a = (0, 0, 1) we have the standard height function,
which has 4 critical points on the torus as shown on Figure 1.21 below.

Proposition 1.134. Let n be an orientation of S. Then for any p ∈ S we have

IIp = −Hessp
(
hn(p)

)
.
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h(0,0,1)

Figure 1.21: Critical points of the standard height function in the torus

Proof. Observe first that TpS ⊥ n (p) implies that p is a critical point of hn(p).
Given v ∈ TpS, choose a curve γ : (−ε, ε) → S such that γ (0) = p and γ̇ (0) = v. Then

Hessp
(
hn(p)

)
=

d2

dt2

∣∣∣
t=0

⟨γ (t) , n (p)⟩ = ⟨γ̈ (0) , n (p)⟩ .

However,

γ (t) ∈ S =⇒ γ̇ (t) ∈ Tγ(t)S ∀t =⇒ ⟨γ̇ (γ) , n (γ (t))⟩ = 0 ∀t.

Differentiating the last equality in t, we obtain

⟨γ̈ (0) , n (p)⟩+ ⟨γ̇ (0) , dpn (γ̇ (0))⟩ = 0.

where the second summand equals IIp (v). This yields

IIp (v) = −⟨γ̈ (0) , n (p)⟩ = −Hessp
(
hn(p)

)
.

□

Fix p ∈ S. Without loss of generality assume that

p = 0 ∈ R3 and n (0) = (0, 0, 1) .

This can be always achieved by applying a translation and a rotation in R3.
Since the shape operator d0n : T0S → T0S, where T0S = R2, is symmetric, d0n has two

real eigenvalues, say k1 and k2. Consider the following cases:

A) If K (p) > 0, then det(dpn) = k1 · k2 > 0 so that k1 and k2 are either both positive or
both negative. Hence, Hess0

(
hn(0)

)
is either positive-definite or negative definite, that is

the height function in the direction (0, 0, 1), which is simply z
∣∣
S

, has a local minimum or
local maximum at p = 0. Hence, there exists a neighbourhood U of p in S such that U
lies either above or below TpS as shown on Figure 1.22 below.

B) If K (p) < 0, then z|S attains both positive and negative values on each neighbourhood
of p. In other words, in any neighbourhood of p there are points in S above and below
TpS as shown on Figure 1.23 below.

Remark 1.135. If K (p) = 0, in general one cannot say anything about the position of S relative
to TpS.
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Figure 1.22: Local shape of a surface with positive Gauss curvature

Figure 1.23: A local shape of a surface with negative curvature: the saddle surface

1.11 Surfaces of positive curvature and the Gauss–Bonnet
theorem

Throughout this section, assume that S is a smooth connected surface.

Theorem 1.136 (Jordan separation theorem). If S is closed as a subset of R3, then R3\S has
exactly two connected components, whose common boundary is S. □

Remark 1.137. The Jordan separation theorem is a well-known result from topology. However
its proof relies on certain results, which are typically not proved in a standard course in topology.
Hence, we take the Jordan separation theorem as granted. An interested reader may find a proof
in [MR09, Thm. 4.16].

If S is compact, then one and only one component of R3\S is bounded. This bounded open
domain is called the inner domain of S. The unbounded domain is called the outer domain of
S.

Corollary 1.138. Any compact surface in R3 is orientable.

Proof. Let S ⊂ R3 be a compact surface. Without loss of generality we can assume that S is
connected (otherwise, pick a connected component of S).

Pick a point p ∈ S. A unit vector n, which is normal at p, is said to be pointing outwards, if
there exists ε > 0 such that p + tn ∈ Ωout for all t ∈ (0, ε), where Ωout is the outer domain of
S.
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Pick a neighbourhood W of p in R3 and a smooth function φ : W → R such that S ∩W =
φ−1 (0) and ∇φ (x) ̸= 0 for all x ∈ W .

Exercise 1.139. Show that φ
∣∣∣
Ωin∩W

< 0 and φ
∣∣∣
Ωout∩W

> 0 (or the other way around). In other

words,
Ωin ∩W = {φ < 0} and Ωout ∩W = {φ > 0} ,

which we assume for the sake of definiteness.

Since

φ
(
p+ t∇φ (p)

)
= φ (p) + |∇φ (p) |2 · t+O(t2) = 0 + |∇φ (p) |2 · t+O(t2) > 0

provided t > 0 is sufficiently small, we obtain that ∇φ(p)
|∇φ(p)| is pointing outwards for any p ∈

S ∩W . A similar argument shows that − ∇φ(p)
|∇φ(p)| is pointing inwards.

Let Ŵ be any other open subset of R3 and φ̂ ∈ C∞( Ŵ )
such that

S ∩ Ŵ = φ̂−1 (0) , ∇φ̂ (x) ̸= 0 ∀x ∈ Ŵ ,

Ωin ∩ Ŵ =
{
φ̂ < 0

}
and Ωout ∩ Ŵ =

{
φ̂ > 0

}
.

Then ∇φ̂(p)
|∇φ̂(p)| is necessarily pointing outwards. In particular,

∇φ̂ (p)

|∇φ̂ (p) |
=

∇φ (p)

|∇φ (p) |
∀p ∈ W ∩ Ŵ ∩ S.

That is

n (p) :=


∇φ(p)
|∇φ(p)| if p ∈ S ∩W,

∇φ̂(p)
|∇φ̂(p)| if p ∈ S ∩ Ŵ ,

is well-defined and smooth on S ∩
(
W ∪ Ŵ

)
.

S ∩ Ŵ

S ∩W

Since we can cover all of S by such subsets, n is a well-defined unit normal field pointing
outwards. □
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Corollary 1.140. Let S be a compact surface with positive Gauss curvature. If n is the unit
normal field pointing outwards, then the second fundamental form of S with respect to n is
positive-definite.

Proof. Notice first that the second fundamental form of S with respect to the outwards pointing
normal field is either positive-definite or negative-definite everywhere on S, because S is connected.
Thus, it suffices to find a single point p on S such that IIp is positive-definite.

Since S is compact, there exists some R > 0 such that the closed ball B̄R(0) of radius R
centered at the origin contains S. Decreasing R if necessary, we can find a new number R > 0,
still denoted by the same letter, such that S ⊂ B̄R(0) and S ∩ ∂B̄R(0) ̸= ∅.

Let p be a point in S ∩ ∂B̄R(0) and γ any curve on S through p. Clearly, the function
t 7→ ∥γ(t)∥2 has a maximum at t = 0 which yields

0 = d
d

dt

∣∣∣
t=0

∥γ(t)∥2 = 2
〈
γ̇(0), p

〉
.

Hence, TpS = p⊥. Moreover, the vector p is pointing outwards, hence n(p) = p/|p|. Now it is
clear that the height function hn(p) has a maximum at p and therefore

Hess
(
hn(p)

)
= −IIp < 0 ⇐⇒ IIp > 0.

□

Proposition 1.141. Let S ⊂ R3 be a compact connected surface. If K (p) > 0 for all p ∈ S,
then Ωin is convex, that is

x, y ∈ Ωin =⇒ [x, y] ⊂ Ωin,

where [x, y] is the segment in R3 connecting x and y. In particular, Ωin is also convex and,
moreover, if x, y ∈ S, then ]x, y[ ⊂ Ωin.

Proof. Assume Ω = Ωin is not convex. Consider A := {(x, y) ∈ Ω× Ω | [x, y] ⊂ Ω}.
Notice that

• A ̸= ∅, since (x, x) ∈ A for all x ∈ Ω;

• A ̸= Ω× Ω, since otherwise Ω were convex.

Then the topological boundary ∂A of A ⊂ Ω × Ω is non-empty. This means the following:
there exist sequences xn, yn, x′n, y

′
n ∈ Ω such that

xn, x
′
n −→ x ∈ Ω, and yn, y

′
n −→ y ∈ Ω such that

[xn, yn] ⊂ Ω and [x′n, y
′
n] ̸⊂ Ω.

Exercise 1.142. Show that there exists z ∈ [x, y] ∩ ∂Ω, where ∂Ω = S, such that v := y − x ∈
TzS. In particular, [x, y] ⊂ TzS.

Assuming Exercise 1.142, we proceed as follows. Let n be a unit normal vector at z pointing
outwards (locally, so that a neighbourhood of z in S is located below the tangent plane). Then
Hesszhn < 0 so that hn has a strict local maximum at z. Furthermore, we can assume that

z = 0, n = (0, 0, 1) , v = (1, 0, 0) , and S = {(u, v, f (u, v))}

in a neighbourhood of the origin.
Consider the curve γ : (−ε, ε) → S given by γ (t) =

(
t, 0, f(t, 0)

)
. Since γ (t) lies above

(t, 0, 0), we must have f (t, 0) ≥ 0 and f (0, 0) = 0. Hence, t = 0 must be a point of local
minimum for the function t 7→ f(t, 0). However, this is impossible, because hn ◦γ : t 7→ f (t, 0)
must have a strict local maximum at t = 0. □
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n

x
y

Proposition 1.143. Let S be a surface with positive Gauss curvature. The affine tangent plane

T ap S = {p+ v | v ∈ TpS}

intersects S at p only.

Proof. Assume q ∈ T ap S ∩ S and q ̸= p. Then ]p, q[ ∈ Ωin by Proposition 1.141. However, the
positivity of the Gauss curvature implies that all points in a neighbourhood of p in T ap S lie in
Ωout. This is a contradiction. □

Theorem 1.144. Let S be a compact connected surface. If K (p) > 0 for all p ∈ S, then the
Gauss map n : S → S2 of S is a diffeomorphism.

Proof. The proof of this theorem consists of the following steps.

Step 1. The Gauss map is a local diffeomorphism.

Since K (p) := det (dpn) ̸= 0, dpn is an isomorphism. Hence, n is a local diffeomorphism
by Theorem 1.70.

Step 2. The Gauss map is surjective.

Since S is compact and n is continuous, n (S) ⊂ S2 is a compact subset. Therefore, n (S)
is closed, because S2 is Hausdorff. Also, n (S) is clearly non-empty.

Furthermore, Step 1 implies that n (S) is open. Since S2 is connected, we must have n (S) =
S2.

Step 3. The Gauss map is injective.

Given n ∈ S2 consider the height function

Hn : Ωin −→ R, x 7−→ ⟨n, x⟩

so that Hn

∣∣∣
∂Ωin=S

= hn. Notice that any point of local maximum of Hn must be on ∂Ωin = S,

since ∇Hn ̸= 0 at any interior point of Ωin.
Assume Hn has two distinct points of local maxima. Denote these points by p and q.

Without loss of generality we can assume Hn (p) ≥ Hn (q). It is convenient to consider the
following two cases separately.

Case 1. Hn (p) > Hn (q).

In this case for any t > 0 we have

Hn (tp+ (1− t) q) = tHn (p) + (1− t)Hn (q)

> tHn (q) + (1− t)Hn (q) = Hn (q) .

For t > 0 and t → 0, we have pt := tp + (1− t) q → q and Hn (pt) > Hn (q). Thus, q cannot
be a point of local maximum for Hn.
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Case 2. Hn (p) = Hn (q).

We have
Hn (p) = Hn (q) ⇐⇒ ⟨n, p− q⟩ = 0

=⇒ p− q ∈ TpS

=⇒ p+ t (p− q) ∈ T ap S ∀t ∈ R
t=−1
=⇒ q ∈ T ap S

=⇒ q = p.

However, this contradicts the assumption that p and q are distinct.

Thus, Hn has at most one local maximum on Ωin. Since Ωin is compact, such point must
exist, so that Hn has a unique point of local maximum p, which lies on S. Then p is also a
unique point of local maximum for hn, that is a unique solution of n (q) = n. This finishes the
proof of Step 3.

The proof of this theorem now follows easily from the preceding steps. Indeed, Steps 2
and 3 yield that the inverse of the Gauss map exits and Step 1 immediately implies that n−1 is
smooth. □

Corollary 1.145. Let S be any compact surface with positive Gauss curvature K. Then∫
S

K = 4π. (1.146)

Proof. The claim of this corollary follows from the following computation∫
S

K =

∫
S

|K| =
∫
S

| det (dn) | =
∫
S2

1 = Area
(
S2
)
= 4π,

where the first equality follows from K > 0, the second one from the definition of K, and the
third one from Theorem 1.116. □

Remark 1.147. It turns out that albeit we did use the hypothesis K > 0 in the proof, (1.146)
still holds for any S diffeomorphic to S2.

g = 0 g = 1 g = 2 . . .

Figure 1.24: Surfaces with 0 holes (the sphere), 1 hole (the torus), and 2 holes

Even more generally, let g denote the number of "holes" of S as shown on Fig. 1.24. Then
we have ∫

S

K = 4π (1− g)

provided S is compact and orientable. This is the celebrated Gauss-Bonnet theorem.
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1.11.1 A solution of Exercise 1.142
Since [x′n, y

′
n] ̸⊂ Ω, there exists some tn ∈ [0, 1] such that z′n = tnx

′
n + (1− tn) y

′
n ̸∈ Ω. By

the compactness of [0, 1], there exists a subequence tnm converging to some t ∈ [0, 1]. In fact,
t ∈ (0, 1) since the endpoint of [x, y] belong to Ω by construction.

Furthermore, any neighbourhood of z := tx+(1− t) y contains points from the complement
of Ω, for example z′nm

for m sufficiently large. However, any neighbourhood of z contains also
points from Ω, for example znm

:= tnmxnm + (1− tnm) ynm provided m is sufficiently large.
Hence, z ∈ ∂Ω = S.

Assume v ̸∈ TzS. Then any neighbourhood of z in [x, y] would contain points both from Ω
and R3\Ω. Indeed, if S is given by the equation φ (p) = 0 in a neighbourhood of z, then

v ̸∈ TzS ⇐⇒ ⟨∇φ (z) , v⟩ ≠ 0 =⇒ φ (z + tv) = 0 + t⟨∇φ (z) , v⟩+O
(
t2
)
.

Hence, since ∇φ (z) ̸= 0, φ takes both positive and negative values on [z − εv, z + εv]. This is
impossible, since otherwise [xnm , ynm ] cannot be contained in Ω.
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Chapter 2

Manifolds

There is a number of ways we could generalize our discussion of surfaces.

Hypersurfaces. These are subsets S ⊂ Rk+1 admitting (smooth) parametrizationsψ : V →
U ⊂ S,V ⊂ Rk in a neighbourhood of each point just as in the definition of the surface.
Virtually all notions and theorems about surfaces we have seen above generalize immediately
to this case (together with proofs), since the condition k = 2 was never used in an essential way.

Embedded submanifolds. Roughly speaking these are "k-dimensional surfaces in Rk+l".
More formally, we could call S ⊂ Rk+l a k-dimensional submanifold, if S admits parametrizations
ψ : V → U ⊂ S, where V ⊂ Rk is open and Dψ is injective at each point. Most of the
statements about surfaces we have seen above generalize to this case too (and rather trivially)
except the very last section involving the Gauss map. It generalizes too, however, this requires
some extra work and, more importantly, not all statements made for surfaces hold true in this
case.

An interested reader may find further details for example in [Tho79] or [GP10]. However,
even higher degree of abstraction is required for applications. Therefore, we consider below
what is known as abstract manifolds skipping the above intermediate steps. Abstract manifolds
are basically “surfaces”, which are not necessarily contained in any ambient Euclidean space.

2.1 Abstract manifolds
Definition 2.1. A Hausdorff topological spaceM is said to be a topological manifold of dimension
k ∈ N0, if M is locally homeomorphic to Rk.

To explain: for all m ∈ M there exists a neighbourhood U ⊂ M and a homeomorphism
φ : U → V ⊂ Rk, where V is open. A pair (U, φ) is called a chart on M .

Example 2.2. Any surface is a topological manifold of dimension k = 2.

Example 2.3. Sk is a topological manifold of dimension k. This can be seen by covering Sk

by two charts just in the case k = 2.

Example 2.4 (A non-example). The union of two intersecting lines, which can be described
more explicitly as {(x, y) ∈ R2 | x2 = y2}, is not a topological manifold. This should be
compared with Examples 1.12 and 1.18.

Definition 2.5 (Smooth manifold).
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Figure 2.1: The union of two intersecting lines is not a manifold

• A collection U = {(Uα, φα) | α ∈ A} of charts on M is called a C0-atlas, if⋃
α∈A

Uα =M.

• A C0-atlas is called smooth, if each coordinate transformation

θαβ := φα ◦ φ−1
β : φβ (Uα ∩ Uβ) −→ φα (Uα ∩ Uβ)

is smooth, where φβ (Uα ∩ Uβ) ⊂ Rk and φα (Uα ∩ Uβ) ⊂ Rk.

• A smooth manifold is a topological manifold equipped with a smooth atlas.

Example 2.6.

1) Rk with a single chart
(
Rk, id

)
is a smooth manifold. More generally, any open subset of

Rk is a smooth manifold.
2) Any smooth surface is a smooth manifold of dimension n = 2.
3) Sk is a smooth manifold of dimension k.
4) The real projective space is defined as follows:

RPk = the set of all lines in Rk+1 through the origin;

= Rk+1\ {0} /∼, (x0, . . . , xk) ∼ (λx0, . . . , λxk) for some λ ∈ R\ {0} ;
= Sk/ ∼, x ∼ −x.

Define the topology on RPk as the quotient topology of Rk+1\ {0}, that is U ⊂ RPk is
declared to be open if and only if π−1 (U) ⊂ Rk+1\ {0} is open, where π : Rk+1\ {0} →
RPk is the quotient map.

For example, the reader should be able to show following Fig. 2.2 that RP1 is homeomorphic
to S1.

Define
Uj :=

{
[x0 : . . . : xn] ∈ RPk | xj ̸= 0

}
j = 0, . . . , k.

Uj is open, since

π−1 (Uj) =
{
(x0, . . . , xk) ∈ Rk+1\ {0} | xj ̸= 0

}
is open. Furthermore, consider the map φj : Uj → Rk

φj ([x]) =

(
x0
xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xk
xj

)
.
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Figure 2.2: A homeomorphism between RP1 and S1

Exercise 2.7. Show that φj is continuous. (Hint: If X is any topological space, a map
f : RPk → X is continuous if and only if f ◦ π is continuous.)

Then

ψj : Rn → Uj, ψj (y0, . . . , yk−1) = [y0 : . . . : yj−1 : 1 : yj : . . . : yk−1]

is the inverse of φj . In particular, φj is a homeomorphism. Thus,

U = {(Uj, φj) | j = 0, . . . , k}

is a C0-atlas on RPk.

Consider the coordinate transformation θ01 = φ0 ◦ φ−1
1 = φ0 ◦ ψ1, which is given by

θ01 (y0, . . . , yk−1) = φ0 ([y0 : 1 : y1 : . . . : yk−1]) =

(
1

y0
,
y1
y0
,
y2
y0
, . . . ,

yk−1

y0

)
and is smooth on

{
y ∈ Rk | y0 ̸= 0

}
= φ0 (U0 ∩ U1). A similar argument yields that

each θij = φi ◦ φ
−1
j is smooth. Thus, U is in fact a smooth atlas.

Remark 2.8. For k = 2 we obtain a smooth manifold of dimension 2, however it turns
out that RP2 cannot be represenetd as a surface in R3. We would have discovered this
manifold if we would consider non-orientable surfaces more carefully. Indeed, the Gauss
map of a non-orientable surface S ⊂ R3 is naturally defined as a map

S ∋ p 7−→ (TpS)
⊥ ∈ RP2.

5) Products: If M and N are smooth manifolds of dimensions k and l respectively, then
M ×N is a smooth manifold of dimension k + l. Indeed, if U = {(Uα, φα) | α ∈ A} is
a smooth atlas on M and V = {(Vβ, ξβ) | β ∈ B} is a smooth atlas on N , that

W :=
{
(Uα × Vβ, φα × ξβ) | α ∈ A, β ∈ B

}
is a smooth atlas on M ×N .
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Exercise 2.9. Find the coordinate transformations for the atlas W and show that these are
smooth indeed.

In particular,

(i) Tk = S1 × . . .× S1 is a smooth manifold of dimension k;
(ii) the cylinder R× S1 is a smooth manifold of dimension 2.

A smooth atlas does not need to be unique. For example, on S2 we can choose

U =
{ (
S2\ {N} , φN

)
,
(
S2\ {S} , φS

) }
or the atlas consisting of 6 hemispheres. However, we have seen that the resulting notions (e.g.
the space of smooth functions on S2) do not depend on this choice. The crucial point is that
the charts of these two atlases are smoothly compatible, that is the corresponding coordinate
transformations are smooth. This motivates to the following definition.

Definition 2.10. Two atlases U = {(Uα, φα) | α ∈ A} and V = {(Vβ, ξβ) | β ∈ B} on the
same topological space M are said to be equivalent if U ∪ V is also a smooth atlas, that is if

ξβ ◦ φ−1
α and φα ◦ ξ−1

β

are smooth for all α ∈ A and for all β ∈ B.

Definition 2.11. A smooth structure is an equivalence class of atlasses.

In the sequel we shall feel free to replace an atlas by an equivalent one.

2.2 Smooth maps
Let (M,U) be a smooth manifold.

Definition 2.12. A function f : M → R is called smooth, if for all α ∈ A the coordinate
representation

Fα := f ◦ φ−1
α : Rk −→ R

with respect to (Uα, φα) is smooth.

Just as in the case of surfaces each Fα is defined on an open subset of Rk, namely φα (Uα).
This should be clear by now and will not be mentioned explicitly below unless really necessary.

Exercise 2.13. Let f : M → R be a function. If U ∼ V , show that f is smooth with respect to
U if and only if f is smooth with respect to V .

Proposition 2.14. The set C∞ (M) of all smooth functions on a smooth manifold is an algebra,
that is

f, g ∈ C∞ (M)

λ, µ ∈ R

}
=⇒ λf + µg ∈ C∞ (M) ;

f, g ∈ C∞ (M) =⇒ f · g ∈ C∞ (M) .

The proof of this proposition is similar to the proof of Proposition 1.28 and is left as an
exercise to the reader.

More generally, let (M,U) and (N,V) be two smooth manifolds of dimensions k and l
respectively.
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Definition 2.15. A map f : M → N is said to be smooth, if each coordinate representation

ξβ ◦ f ◦ φ−1
α : Rk −→ Rl

is smooth.

Proposition 2.16.

f ∈ C∞ (M ;N)

g ∈ C∞ (N ;L)

}
=⇒ g ◦ f ∈ C∞ (M ;L) .

Again, the proof of this proposition is a verbatim repetition of the proof of Theorem 1.39.
Also, just in the case of surfaces, we have the notions of a diffeomorphism and a local

diffeomorphism.

2.3 The tangent space
If M is an abstract manifold and γ : (−ε, ε) →M is a smooth curve, then γ̇ (0) does not make
sense in any obvious way. Hence, our definition of the tangent space does not immediately
generalize to the present setting.

To come up with a suitable generalization, observe the following: v ∈ Rk is the tangent
vector of a curve γ : (−ε, ε) → Rk, γ (0) = p, if and only if

γ (t) = p+ v · t+ o (t) as t −→ 0.

Hence we may consider the following equivalence relation: two smooth curves γ1, γ2 : (−ε, ε) →
Rk such that γ1 (0) = p = γ2 (0), are said to be equivalent if γ1 (t)− γ2 (t) = o (t).

Our observation above yields immediately the following.

Proposition 2.17. γ1 ∼ γ2 ⇐⇒ γ̇1 (0) = γ̇2 (0). □

Hence, we may identify Rn, which is thought of as a tangent space of Rn at p, with the set
of equivalence classes of curves through p. Explicitly, the map γ 7→ γ̇(0) induces a bijection{

γ | γ(0) = p
}
/∼ −→ Rn.

Thus, we may think of tangent vectors at a given point p as classes of curves through p. This
approach generalized to manifolds as follows.

Definition 2.18. Let M be a smooth manifold of dimension k. Pick a point m ∈ M . Two
smooth curves γ1, γ2 : (−ε, ε) →M such that γ1 (0) = m = γ2 (0) are said to be equivalent, if
for any chart (U, φ) such that m ∈ U we have

φ ◦ γ1 ∼Rk φ ◦ γ2 ⇐⇒ φ ◦ γ1 (t)− φ ◦ γ2 (t) = o (t) . (2.19)

An equivalence class of curves is called a tangent vector at the point m.

Lemma 2.20. If (2.19) holds for some chart (U, φ) containing m, then (2.19) holds for any
chart containing m.
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Proof. Let
(
Û, φ̂

)
be any other chart such that m ∈ Û. Denote p := φ (m). Then

φ̂ ◦ γ1 (t)− φ̂ ◦ γ2 (t) = φ̂ ◦ φ−1︸ ︷︷ ︸
θ

◦φ ◦ γ1︸ ︷︷ ︸
β1

(t)− φ̂ ◦ φ−1︸ ︷︷ ︸
θ

◦φ ◦ γ2︸ ︷︷ ︸
β2

(t)

= θ ◦ β1 (t)− θ ◦ β2 (t)

Since θ is smooth, θ is Lipchitz, that is there exists L > 0 such that

|θ (x)− θ (y) | ≤ L|x− y| ∀x, y ∈ Bδ (p) ,

where δ > 0. Hence,

|θ ◦ β1 (t)− θ ◦ β2 (t) | ≤ L|β1 (t)− β2 (t) | = o (t) ,

because β1 (t)− β2 (t) = o (t). □

Definition 2.21. The set TmM :=
{
[γ] | γ is a smooth curve through m

}
is called the tangent

space of M at m.

Exercise 2.22. Let V be a vector space and Φ: X → V a bijective map, whereX is an arbitrary
set. Then there is a unique structure of a vector space on X such that Φ is an isomorphism. In
fact, we have

λ · x = Φ−1
(
λ · Φ(x)

)
and x1 + x2 = Φ−1

(
Φ(x1) + Φ(x2)

)
.

Proposition 2.23. TmM is a vector space of dimension k.

Proof. Pick a chart (U, φ) containing m and suppose φ (m) = 0 ∈ Rk. Consider the map

{γ | γ (0) = m} −→ Rk, γ 7−→ d

dt

∣∣∣
t=0
φ ◦ γ (t) , (2.24)

where γ is the smooth curve in M and, hence, φ ◦ γ (t) is the curve in Rk.

Exercise 2.25. Show that this map is surjective.

If γ1 ∼ γ2, then β1 := φ ◦ γ1 ∼ β2 := φ ◦ γ2 so that β̇1 (0) = β̇2 (0). Therefore, (2.24)
induces a surjective map φ∗ : TmM → Rk, which is in fact bijective, since

φ∗ [γ1] = φ∗ [γ2] ⇐⇒ β1 ∼ β2 ⇐⇒ β̇1 (0) = β̇2 (0) .

Thus, we define the structure of a vector space on TmM so that φ∗ is a linear isomorphism.

Exercise 2.26. Show that the following holds:

(i) If γ ∈ TmM and λ ∈ R, then λ [γ] = [γ (λ·)];
(ii) For two curves γ1, γ2 through m define

γ (t) := φ−1 (β1 (t) + β2 (t)) ,

where βj := φ ◦ γj . Show that γ is a smooth curve through m and

[γ1] + [γ2] = [γ] .
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We still need to show that the structure of the vector space on TmM does not depend on the
choice of the chart (U, φ). To this end, let

(
Û, φ̂

)
be another chart such that m ∈ Û. Let

φ̂∗ : TmM −→ Rk, [γ] 7−→ d

dt

∣∣∣
t=0
φ̂ ◦ γ (t)

be the corresponding map. Denoting temporarily by +φ the addition obtained via φ∗, we obtain

[γ] = [γ1] +φ [γ2] ⇐⇒ β̇ (0) = β̇1 (0) + β̇2 (0) ,

where β (t) = φ ◦ γ (t) and βj (t) = φ ◦ γj (t). Denote β̂ (t) = φ̂ ◦ γ (t) and β̂j (t) = φ̂ ◦ γj (t).
Then

β̂ = φ̂ ◦ γ = φ̂ ◦ φ−1 ◦ φ ◦ γ = θ ◦ β =⇒ ˙̂
β (0) = Dpθ

(
β̇ (0)

)
.

Similarly, we have ˙̂
βj (0) = Dpθ

(
β̇j(0)

)
.

Since Dpθ is a linear map, we have

˙̂
β (0) = Dpθ

(
β̇1 (0) + β̇2 (0)

)
= Dpθ

(
β̇1 (0)

)
+Dpθ

(
β̇2 (0)

)
=

˙̂
β1 (0) +

˙̂
β2 (0) .

Hence, if [γ] = [γ1] +φ [γ2], then also [γ] = [γ1] +φ̂ [γ2].
The fact that the multiplication with scalars is independent of the choice of a chart follows

immediately from Exercise 2.26, (i). □

Notice that the origin in TmM is represented by the constant curve γ (t) = m (or any other
curve equivalent to this one).

Remark 2.27. The proof of Proposition 2.23 implies the following. Let (U, φ) be a chart on M
and m ∈ U. Denote φ (m) = p ∈ Rk and define γj : (−ε, ε) → U, γj (0) = m by

φ ◦ γj (t) = p+ (0, . . . , 0, t, 0, . . . , 0) .

where the non-trivial component is at the jth place. Then

eφ :=
(
[γ1] , . . . , [γk]

)
(2.28)

is a basis of TmM .

At his point for a surface S ⊂ R3 we have two definitions of the tangent space. The
following proposition shows that these are equivalent.

Proposition 2.29. If S ⊂ R3 is a smooth surface, then TpS in the sense of Definition 2.21 is
naturally isomorphic to the tangent plane of S.

Proof. Denote temporarily the tangent plane of S at p in the sense of Definition 2.21 by Ep.
Consider the map

TpS −→ Ep, [γ] 7−→ γ̇ (0) . (2.30)

Exercise 2.31. Check that this map is well-defined, that is independent of the choice of the
representative.
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This map is linear. Indeed, if ψ is a parametrization at p such that ψ (0) = p and

γ1 := ψ ◦ β1, γ2 := ψ ◦ β2

then [γ1] + [γ2] is represented by the curve t 7→ ψ
(
β1 (t) + β2 (t)

)
= γ (t). Hence

γ̇ (0) = D0ψ
(
β̇1 (t) + β̇2 (t)

)
= D0ψ

(
β̇1 (t)

)
+D0ψ

(
β̇2 (0)

)
= γ̇1 (0) + γ̇2 (0) .

That is [γ1] + [γ2] ∈ TpS is mapped onto γ̇1 (0) + γ̇2 (0).

Since λ [γ] = [γ (λ·)] 7→ d
dt

∣∣∣
t=0
γ (λt) = λγ̇ (0), we see that (2.30) is linear. Since this map

is clearly surjective and TpS and Ep have equal dimension, (2.30) is an isomorphism. □

Exercise 2.32 (The tangent space of a vector space). Let V be a finite dimensional vector space.
Show that for any v ∈ V the map γ 7→ γ̇(0), where γ is a smooth curve through v, induces a
natural isomorphism TvV → V. Thus, in the sequel we identify TvV with V without further
comments.

2.4 The differential of a smooth map
Let f : Mk → N l be a smooth map.

Definition 2.33. For m ∈M the map

dmf : TmM −→ Tf(m)N, [γ] 7−→ [f ◦ γ]

is called the differential of f at m.

Proposition 2.34. The differential is a linear map. If (U, φ) is a chart on M such that m ∈ U
and (V, ψ) is a chart on N such that f (m) ∈ V, then dmf is represented by the Jacobi matrix
of F := ψ ◦ f ◦ φ−1 with respect to the bases eφ and eψ, that is

dmf (eφ) = eψ ·Dφ(m)
F.

Proof. Assume for simplicity

φ (m) = 0 ∈ Rk and ψ (f (m)) = 0 ∈ Rl

For γ : (−ε, ε) →M such that γ (0) = m, denote β := φ ◦ γ : (−ε, ε) → Rk.
We have

f ◦ γ = f ◦ φ−1 ◦ φ ◦ γ = f ◦ φ−1 ◦ β.

This yields

ψ∗ [f ◦ γ] =
d

dt

∣∣∣
t=0

(
ψ ◦ f ◦ φ−1︸ ︷︷ ︸

F

◦β (t)
)
=

d

dt

∣∣∣
t=0

(
F ◦ β (t)

)
= D0F

(
β̇ (0)

)
.

By noticing the following β̇ (0) = d
dt

∣∣∣
t=0
φ ◦ γ (t) = φ∗ [γ], we obtain

ψ∗dmf ([γ]) = D0F ◦ φ∗ [γ] ∀ γ ⇐⇒ dmf = ψ−1
∗ ◦D0F ◦ φ∗.

Since ψ−1
∗ , D0F , and φ∗ are linear, we obtain that dmf is linear too.
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M

m γ

U

N

f (m)

V

Rk

β

0

Rl

0

f

F

φ
ψ

ψ ◦ f ◦ γ

f ◦ γ

Furthermore, by the definition of eφ, see (2.28), we have β̇j (0) = (0, . . . , 0, 1, 0, . . . , 0) =
ej . Hence,

ψ∗dmf ([γj]) = D0F (ej) =
l∑

i=1

∂Fi
∂xj

êi,

where (ê1, . . . êl) is a standard basis of Rl. Hence,

dmf [γj] = ψ−1
∗

(
l∑

i=1

∂Fi
∂xj

êi

)
=

l∑
i=1

∂Fi
∂xj

ψ−1
∗ (êi)︸ ︷︷ ︸
[γ̂i]

=⇒

(
dmf [γ1] , . . . , dmf [γk]

)
=
(
[γ̂1] , . . . , [γ̂l]

)∂F1

∂x1
. . . ∂F1

∂xk

. . . . . . . . .
∂Fl

∂x1
. . . ∂Fl

∂xk

 ,

where [γ̂i] is the ith element of eψ. This finishes the proof of this proposition. □

Exercise 2.35. Just as in Exercise 2.32, for a finite dimensional vector space V identify TvV
with V. Show that if A : V → W is a linear map, where W is another vector space, then
dvA = A.

Proposition 2.36. For any smooth manifolds M,N,K and any f ∈ C∞ (M ;N) and g ∈
C∞ (N ;K) we have

dm (g ◦ f) = df(m)g ◦ dmf.

Proof. For any [γ] ∈ TmM we have

dm (g ◦ f) [γ] = [g ◦ f ◦ γ] = [g ◦ (f ◦ γ)] = df(m)g ([f ◦ γ]) = df(m)g (dmf [γ]) ,
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where the third and fourth equalities follow from the definitions of df(m)g and dmf respectively.
□

Corollary 2.37. If f : M → N is a diffeomorphism, then dmf : TmM → Tf(m)N is an
isomorphism. Conversely, if dmf is an isomorphism, then f is a local diffeomorphism atm. □

2.5 Submanifolds
Think of Rk+l as Rk × Rl, where k ≥ 1, l ≥ 1. We have the maps

ι2 : Rl −→ Rk+l, ι2 (y) = (0, y)

π2 : Rk+l −→ Rl, π2 (x, y) = y

where x ∈ Rk and y ∈ Rl.
Let f : Rk+ℓ → Rℓ be a smooth map, which is defined on some neighbourhood U of the

origin. For any point p0 = (x0, y0) ∈ U we have the following linear map

Dyf(p0) : Rℓ ı2−−→ Rk+ℓ Dp0f−−−−→ Rℓ. (2.38)

For example, if k = ℓ = 1, we have Dyf(p0) = ∂f
∂y
(p0). For this reason, we call (2.38) the

partial derivative of f with respect to y (at the point p0).
To simplify the notations it is convenient to assume that p0 is the origin and f(0) = 0,

although this is immaterial.

Theorem 2.39. If Dyf(0) is an isomorphism, then there exists a smooth map θ : Rk+ℓ → Rk+ℓ,
which is a local diffeomorpism at 0, such that θ(0) = 0 and

f ◦ θ = π2

holds in a neighbourhood of the origin.

Proof. Define
g : Rk+ℓ → Rk+ℓ by g(x, y) :=

(
x, f(x, y)

)
. (2.40)

Then for the differential of g we have

Dg(0) =

(
idRk 0

Dxf(0) Dyf(0)

)
⇐⇒ Dg(0)

(
u
v

)
=

(
u

Dxf(0)u+Dyf(0)v

)
,

where u ∈ Rk and v ∈ Rℓ.
If (u v) ∈ kerDg(0), then u = 0 and Dyf(0)v = 0. However, Dyf is an isomorphism

by assumption of this theorem, so that v = 0. Therefore, Dg(0) is injective and, hence, an
isomorphism.

By the inverse map theorem, there is a local inverse θ : Rk+ℓ → Rk+ℓ to g, that is in a
neighbourhood of the origin we have

g ◦ θ = idRk+ℓ =⇒ π2 = π2 ◦ idRk+ℓ = π2 ◦ g ◦ θ = f ◦ θ.

Thus, the theorem is proved. □
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Corollary 2.41 (The implicit function theorem). Suppose that the assumptions of Theorem 2.39
hold. Then there exists a neighbourhood V1 of 0 ∈ Rk, a neighbourhood V2 of 0 ∈ Rℓ, and a
unique smooth map h : V1 → V2 such that

f(x, y) = 0 ⇐⇒ y = h(x) (2.42)

whenever (x, y) ∈ V1 × V2.
Furthermore, denoting W := f−1(0) ∩ V1 × V2, the map

ψ := π1
∣∣
W
: W → V1, (x, y) 7→ x

is a homemorphism, that is (W,ψ) is a chart on f−1(0) near the origin.

Proof. Let θ : U → θ(U) be the local diffeomorphism provided by Theorem 2.39. Pick any
open subsets V1 and V2 as in the formulation of the theorem such that V1 × V2 ⊂ U . For x ∈ V1
define h(x) := π2 ◦ θ (x, 0). Furthermore, for (x, y) ∈ V1 × V2, denote

(z, w) := θ−1(x, y) = g(x, y) =
(
x, f(x, y)

)
.

Here we used the fact, that g, which is given by (2.40), is the inverse of θ. Then

f(x, y) = 0 =⇒ 0 = f ◦ θ ◦ θ−1(x, y) = f ◦ θ (z, w) = w

=⇒ (z, 0) =
(
x, f(x, y)

)
.

Hence, z = x and (x, y) = θ(x, 0), which yields in turn y = h(x).
Furthermore, for any x ∈ V1 we have

(x, 0) = g ◦ θ (x, 0) = g
(
π1 ◦ θ (x, 0), π2 ◦ θ(x, 0)

)
From the definition of g we obtain x = π1 ◦ θ (x, 0) and, hence, 0 = f

(
x, h(x)

)
.

To show the uniqueness, notice that

f
(
x, h(x)

)
= 0 =⇒ g

(
x, h(x)

)
=
(
x, f

(
x, h(x)

))
= (x, 0)

f
(
x, ĥ(x)

)
= 0 =⇒ g

(
x, ĥ(x)

)
= (x, 0).

Since g is a local diffeomorphism, we obtain h(x) = ĥ(x) provided x is sufficiently close to the
origin.

Furthermore, notice that the map

V1 → W, x 7→
(
x, h(x)

)
is a continuous inverse of ψ. Hence, ψ is a homeomorphism. □

The hypothesis of Corollary 2.41 implies that the differential of f at the origin is surjective.
In fact, the surjectivity of the differential is decisive in Theorem 2.39 and Corollary 2.41,
whereas the hypothesis that Dyf(0) is an isomorphism can be achieved by a linear change
of coordinates, see the proof of Theorem 2.47 below for some details.

Definition 2.43. Let N be a smooth manifold with an atlas U . A chart (U, φ) is said to be
smoothly compatible with U if U ∪

{
(U, φ)

}
is again a smooth atlas.
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The above definition simply means that both φ ◦ φ−1
α and φα ◦ φ−1 are smooth for any chart

(Uα, φα) ∈ U . Equivalently, this means that φ : U → φ(U) ⊂ Rk is a diffeomorphism.
The proofs of Theorem 2.39 and Corollary 2.41 show that in the setting of these theorems

there is a chart (U,φ) on Rk+ℓ smoothly compatible with U =
{
(Rk+l, id)

}
such that φ

(
U ∩

N
)
⊂ Rk × {0}. This motivates the following.

Definition 2.44. Let N be a manifold of dimension k + ℓ. A subset M ⊂ N is said to be
a submanifold of dimension k (or k-subamnifold), if for each point m ∈ M there exists a
smoothly compatible chart (U,φ) on N centered at m such that

φ
(
U ∩M

)
= φ(U) ∩

(
Rk × {0}

)
(2.45)

holds. Under these circumstances, the chart (U,φ) is said to be adapted to M .

Below we consider only charts smoothly compatible with a given atlas and therefore this will
not be mentioned explicitly each time. Alternatively, given a smooth atlas U one can always
replace U by the unique maximal atlas containing U . Thus we can assume that U is maximal
from the very beginning and in this case any chart smoothly compatible with U is contained in
U so that one can simply talk about charts (from a maximal atlas).

Notice that if (U,φ) is an adapted chart, then (M ∩ U, ψ) is a chart on M , where

ψ : = π1 ◦ φ
∣∣
U∩M : U ∩M → Rk.

Proposition 2.46. A k-submanifold is a smooth k-manifold.

Proof. By its very definition, a k-submanifold is equipped with a C0-atlas U , consisting of
restrictions of all adapted charts.

I claim that this atlas is in fact smooth. Indeed, let (U1, φ1) and (U2, φ2) be two charts
adapted to M . Denoting by ı1 : Rk → Rk+ℓ the inclusion ı1(x) = (x, 0), we have

ψ1 ◦ ψ−1
2 (x) = ψ1

(
φ−1(x, 0)

)
= π1 ◦ φ1 ◦ φ−1

2
◦ ı1 (x) = π1 ◦ θ12 ◦ ı1 (x).

Thus, U is smooth. □

We are now in the position to state one of the central theorems of this chapter.

Theorem 2.47. Let M and N be smooth manifolds. If n is a regular value of a smooth map
f : M → N and dimM ≥ dimN , then f−1(n) is a submanifold of M of dimension k :=
dimM − dimN .

Proof. Denote
ℓ = dimN =⇒ dimM = k + ℓ.

Pick any m ∈ f−1(n) and any charts (U,φ) and (V, ψ) centered at m and n respectively.
Let F = ψ ◦ f ◦ φ−1 be the coordinate representation of f with respect to the charts (U,φ)
and (V, ψ). Since φ and ψ are diffeomophisms, we obtain that the differential D0F of F at
the origin is surjective (in fact, DpF is surjective at any point p ∈ F−1(0)). In particular,
dimkerD0F = k.

Choose a basis (v1, . . . , vk+ℓ) of Rk such that (v1, . . . , vk) is a basis of kerD0F . Set

A : Rk+ℓ → Rk+ℓ, z 7→
k+ℓ∑
j=1

zjvj.

Notice that by the definition of A and elementary facts from linear algebra, the following holds:
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• A is an isomorphism;

• A ◦ ı1 : Rk → kerD0F is an isomorphism;

• D0F ◦ A ◦ ı2 : Rℓ → Rℓ is an isomorphism.

Furthermore, consider the map G := F ◦ A : Rk+ℓ → Rℓ. By Exercise 2.35, we have

D0G = D0F ◦ A =⇒ DyG = D0F ◦ A ◦ ı2.

Since the latter map is an isomorphism, by the proofs of Theorem 2.39 and Corollary 2.41 we
obtain a chart (W, ξ) on Rk+ℓ adapted to G−1(0), that is

ξ
(
W ∩G−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
.

Without loss of generality we can assume that W is contained in A−1
(
φ(U)

)
.

Various charts involved in the proof are shown schematically on Figure 2.3.

Figure 2.3: Scheme of the proof of Theorem 2.47.
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Define a chart (Ŵ , ξ̂ ) on Rk+ℓ by

(Ŵ , ξ̂ ) =
(
A−1(W ), ξ ◦ A−1

)
.

Since z ∈ G−1(0) ⇔ Az ∈ F−1(0), we obtain

ξ̂
(
Ŵ ∩ F−1(0)

)
= ξ
(
W ∩G−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
.

Finally, setting

φ1 := ξ̂ ◦ φ and U1 = φ−1
1

(
ξ̂(Ŵ )

)
= φ−1

(
Ŵ
)

we obtain

φ1

(
U1 ∩ f−1(n)

)
= ξ̂
(
Ŵ ∩ F−1(0)

)
= ξ(W ) ∩

(
Rk × {0}

)
= φ1(U1) ∩

(
Rk × {0}

)
.

Thus, (U1, φ1) is a chart adapted to f−1(n) at m. □

Notice the following: If dimM < dimN , then n is a regular value of smooth map f : M →
N if and only if n /∈ Im f , see the paragraph following Definition 1.74. In this case f−1(n) = ∅
is also (by definition) a smooth manifold. Thus, the condition dimM ≥ dimN can be dropped
in the formulation of Theorem 2.47.

Proposition 2.48. In the setting of Theorem 2.47, for any m ∈ f−1(n) we have

Tmf
−1(n) = ker dmf.

Proof. Pick any curve γ in f−1(n) through m. Since γ lies in the level set of f , we have

f ◦ γ (t) = n for all t ∈ (−ε, ε). (2.49)

Since the constant curve t 7→ n represents the zero vector in TnN , by the definition of the
differential of f and (2.49) we obtain dmf

(
[γ]
)
= 0. In other words any vector [γ] tangent to

f−1(n) lies in the kernel of dmf . □

Example 2.50.

(i) Consider the map f : Rn+1 → R, f(x) = |x|2. Then 1 is a regular value of f . In
particular, Sn = f−1(1) is a manifold of dimension n. Of course, the reader knows this
fact by now very well.

(ii) Let Mn(R) be the space of all n× n matrices with real entries. One can show that 1 is a
regular value of the function det : Mn(R) → R, A 7→ detA. Consequently,

SLn(R) :=
{
A ∈Mn(R) | detA = 1

}
is a manifold of dimension dimMn(R)− 1 = n2 − 1.

Let us compute the tangent space to SLn(R) at the point 1. To this end, it is convenient
to identify Mn(R) with Rn2 . Recalling that

detA =
∑
σ

signσ a1σ(1) . . . anσ(n),
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where σ runs through all permutations of the set { 1, . . . , n }, for any B ∈ Mn(R) we
obtain

det
(
1+ tB

)
= (1 + t b11)(1 + t b22) . . . (1 + t bnn)

+
∑
σ ̸=id

signσ
(
δ1σ(1) + tb1σ(1)

)(
δ2σ(2) + tb2σ(2)

)
. . .
(
δnσ(n) + tbnσ(n)

)
.

Notice that for any σ ̸= id, σ(i) ̸= i at least for two values of i. Hence, the last term in
the above expression is o(t). This yields

det
(
1+ tB

)
=
(
1 + t trB + o(t)

)
+ o(t).

Consequently,
(
d1det

)
B = trB and therefore

T1SLn(R) =
{
B ∈Mn(R) | trB = 0

}
.

(iii) Let Symn(R) ⊂ Mn(R) denote the subspace of all symmetric matrices. One can show
that the identity matrix 1 ∈ Symn(R) is a regular value of the map

f : Mn(R) → Symn(R), f(A) = A · At. (2.51)

Consequently,
O(n) :=

{
A ∈Mn(R) | A · At = 1

}
is a manifold and

dimO(n) = dimMn(R)− dimSymn(R) = n2 − n(n+ 1)

2
=
n(n− 1)

2
.

Notice that if we would consider (2.51) as a map Mn(R) →Mn(R), then 1 would not be
a regular value.

Just like in the case of SLn(R), let us compute the tangent space to O(n) at the point 1.
We have

f(1+ sB) = (1+ sB) · (1+ sB)t = 1+ s
(
B +Bt

)
+ o(s).

Hence, d1fB = B +Bt and

T1O(n) =
{
B ∈Mn(R) | Bt = −B

}
.

We finish this section by Sard’s theorem, which, loosely speaking, says that for any smooth
map almost any point is a regular value. More precisely, we say that a subset A of a smooth
k-manifold M is of measure zero, if for any chart (U,φ) on M the set φ

(
A ∩ U

)
⊂ Rk is of

measure zero.

Theorem 2.52 (Sard). Let f : M → N be a smooth map between smooth manifolds. Then
almost any point n ∈ N is a regular value of f , that is the set of critical values for f is of
measure zero. □

A proof of Sard’s theorem can be found for example in [BT03, 9.4] or [Mil65, §3].
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2.6 Immersions and embeddings
Just like maps with surjective differentials can be conveniently described as projections after
applying a diffeomorphisms, the maps with injective differentials admit an analogous description.
We begin, however, with the following auxiliary result.

Theorem 2.53. Let U be an open subset of Rk containing the origin and f : U → Rk × Rℓ be
a smooth map such that f(0) = 0 and

D0f1 : Rk → Rk, where f1 := π1 ◦ f,

is an isomorphism. Then there exists a neighbourhood V ⊂ Rk+ℓ of the origin and a diffeomor-
phism θ : V → θ(V ) ⊂ Rk+ℓ such that θ ◦ f = ı1 and θ

(
V ∩ f(U)

)
= θ(V ) ∩

(
Rk × {0}

)
.

Proof. The proof of this theorem is similar to the proof of Theorem 2.39.
Thus, consider the map

F : U × Rℓ → Rk+ℓ = Rk × Rℓ, F (x, y) := f(x) + (0, y) =
(
f1(x), f2(x) + y

)
.

The differential of this map

D0F =

(
D0f1(0) 0

D0f2(0) idRℓ

)
is an isomorphism. Hence, there exists a neighbourhood V of the origin and a diffeomorphism
θ : V → θ(V ) such that

θ ◦ F = idθ(V ).

In particular, for any (x, 0) ∈ θ(V ) the above equality yields:

θ ◦ F (x, 0) = θ ◦ f(x) = ı1(x) =⇒ θ ◦ f = ı1.

Hence, θ(V ) ∩
(
Rk × {0}

)
⊂ θ
(
V ∩ f(U)

)
.

To show the converse inclusion, let (x, y) ∈ θ
(
V ∩f(U)

)
. Hence, there exists some (z, w) ∈

V ∩ f(U) such that (x, y) = θ(z, w). In this case we must have (z, w) = f(x) for some x ∈ U
and therefore

(x, y) = θ(z, w) = θ ◦ f(x) = (x, 0).

Thus, y = 0 and (x, 0) ∈ V , which yields θ
(
V ∩ f(U)

)
⊂ θ(V ) ∩

(
Rk × {0}

)
. □

Definition 2.54. A smooth map f : Mk → N ℓ such that dmf is injective at each point m ∈ M
is called an immersion. An immersion, which is a diffeomorphism onto a k-submanifold of N ,
is called an embedding.

Clearly, an immersion f : M → N can exists only if dimM ≤ dimN . Notice also, that by
Theorem 2.53 each immersion is locally injective, however an immersion does not need to be
globally injective. Even if an immersion is injective, this may fail to be an embedding. This is
shown schematically on Fugures 2.4 and 2.5 below. In particular, the image of an immersion
does not need to be a submanifold.

Proposition 2.55. An immersion which is a homeomorphism onto its image is an embedding.

Proof. Denote k := dimM and ℓ := dimN . The proof consists of the following 3 steps.

Step 1. For any m ∈ M there exists a chart (V, ψ) on N centered at n := f(m) with the
following properties:
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Figure 2.4: The image of a non-injective
immersion R → R2.

Figure 2.5: The image of an injective
immersion R → R2, which is not an
embedding.

• dnψ1

∣∣
Im dmf

: Im dmf → Rk is an isomorphism, where ψ1 = π1 ◦ ψ and π1 : Rℓ =

Rk ⊕ Rℓ−k → Rk is the projection.

• There exists a neighbourhood U of m such that f(U) = V ∩ f(M).

Since f is a homeomorphism onto its image, f : M → f(M) is an open map. In particular,
for any open Û ⊂ M there exists an open subset V̂ ⊂ N such that f(Û) = V̂ ∩ f(M). If Û is
a neighbourhood of m, we can choose a chart (V, ξ) centered at n such that V ⊂ V̂ .

Furthermore, since dnξ : TnN → Rℓ is an isomorphism and Im dmf is a k-dimensional
subspace of TnN , we can find a linear isomorphism A : Rℓ → Rℓ such that

A
(
dnξ
(
Im dmf

))
= Rk × {0}.

Then (V, ψ) = (V, A ◦ ξ) is the required chart. Also, setting U := f−1(V ) we obtain f(U) =
V ∩ f(M).

Step 2. f(M) is a submanifold of N .

Pick anym ∈M and a chart (U,φ) centered atm. Pick also a chart (V, ψ) as in the previous
step. Denote also W := ψ(V ) ⊂ Rℓ.

Let F = ψ ◦f ◦φ−1 be the coordinate representation of f . Denoting F1 := π1 ◦F : Rk → Rk,
we have

D0F1(0) = D0π1 ◦D0F = D0π1 ◦ dnψ ◦ dmf ◦ d0φ
−1 = dnψ1 ◦ dmf ◦ d0φ

−1

Since d0φ−1 is an isomorphism, by Step 1 we obtain that D0F1 is injective. Hence, D0F1 is an
isomorphism. Hence, by Theorem 2.53 we can find a diffeomorphism1 θ : W → θ(W ) ⊂ Rℓ

such that
θ ◦ F = ı1 ⇐⇒

(
θ ◦ ψ

)
◦ f ◦ φ−1 = ı1

Denote ψ̂ := θ ◦ ψ. Then (W, ψ̂) is a chart on N adapted to f(M).

Step 3. f is a diffeomorphism between M and f(M).

1Without loss of generality we may assume that V was chosen so that θ is defined everywhere on W .
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Let (U,φ) and (W, ψ̂) be as in the preceding step. By the construction of ψ̂, the coordinate
representation of f is ψ̂ ◦ f ◦φ−1 = ı1 : Rk → Rℓ. Since the restriction of π1 ◦ψ to f(M)∩W is
a chart on f(M), the coordinate representation of f viewed as a map f : M → f(M) is given
by

π1 ◦ ψ̂ ◦ f ◦ φ−1 = π1 ◦ ı1 = id.

Hence, f is a local diffeomorphism. Since f : M → f(M) is bijective, this is a diffeomorphism.
□

Corollary 2.56. If M is compact, then any injective immersion f : M → N is an embedding.

Proof. Pick a closed subset A ⊂M . Since A is closed in M , A is compact and therefore f(A)
is compact in N . Since N is Hausdorff, f(A) is closed. Hence, f is a closed map, i.e., the
image of any closed subset is closed. This means that f−1 : f(M) → M is continuous, that is,
f : M → f(M) is a homeomorphism. The statement of this corollary now follows immediately
from Proposition 2.55. □

Theorem 2.47 combined with Sard’s theorem allows us to construct many smooth manifolds,
which are in fact submanifolds of Euclidean spaces. It turns out that any smooth manifold can
be embedded into some Euclidean space, see, however, the discussion in the following section.
Here we prove a version of this result in the case when the manifold under consideration is
compact.

Theorem 2.57. Any smooth compact manifold admits an embedding into some Euclidean space.

Proof. For any m ∈M choose a chart (Um, φm). Pick also open neigbourhoods Wm ⊂ Vm and
a bump function ρm such that the following holds:

• V m ⊂ Um;

• ρm
∣∣∣
Wm

≡ 1 and ρm < 1 outside of Wm;

• ρm vanishes outside of Vm.

Since M is compact, there is a finite subset {m1, . . . ,mp } of M such that
{
Wi

}
cover all

of M , where Wi := Wmi
. Consider each ψi := ρi · φi := ρmi

· φmi
as a smooth map M → Rk

(extended by zero outside of Vm), where k = dimM . Finally, define

f : M → Rpk+p by f(m) =
(
ψ1(m), . . . , ψp(m), ρ1(m), . . . , ρp(m)

)
.

Clearly, f is smooth. I claim that this map is also injective. Indeed, pick any two distinct
points m and m̂. Without loss of generality, we can assume m ∈ W1. If m̂ ∈ W 1, then
ψ1(m) = φ1(m) ̸= φ1(m̂) = ψ1(m̂). If m̂ /∈ W 1, then 1 = ρ1(m) ̸= ρ1(m̂), so that f is
injective indeed.

Furthermore, assumingm ∈ W1 again, dmψ1 : TmM → Rk is an isomorphism, in particular,
dmψ1 is injective. Hence, dmf : TmM → Rkp+p is injective at any m ∈ M . By Corollary 2.56,
f is an embedding. □

2.7 The second countability axiom, the Whitney embedding
theorem, and the existence of a partition of unity

Let (X, T ) be a topological space. Recall that a subset B ⊂ T is called a basis of T if any point
in X has a neighbourhood U ∈ B. Equivalently, this means that any open subset in X can be
represented as a union of subsets from B.
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Definition 2.58. X is said to satisfy the second axiom of countability (or, simply, X is second
countable) if X admits a countable basis of its topology.

For example, the set
{
Br(x) | r ∈ Q>0, x ∈ Qn

}
is a countable basis of the standard

topology of Rn. In particular, Rn is second countable.
Notice that any subspace of a second countable space is itself second countable.

Coming back to manifolds, notice that if a smooth manifold M can be embedded into
some Euclidean space, M must be second countable. However, albeit any manifold according
to Definition 2.5 is locally second countable, there may be no global countable base of its
topology. Indeed, since any disjoint union of manifolds is again a manifold, the disjoint union
of an uncountable family of manifolds is not second countable, and therefore does not admit an
embedding into an Euclidean space. For this reason as well as some other ones, it is customary
to restrict attention to second countable manifolds. With this in mind, from now on we replace
Definition 2.5 by the following one.

Definition 2.59. A Hausdorff second countable topological space M is said to be a topological
manifold of dimension k ∈ N0, if M is locally homeomorphic to Rk. A smooth manifold is a
topological manifold equipped with a smooth atlas (structure).

Of course, strictly speaking, at this point we should check that all constructions of manifolds
we met before yield second countable manifolds if we start with second countable ones. I leave
this as a (simple) exercise to the reader.

It turns out that adding the second countability to the definition of a manifold suffices to
prove the following generalization of Theorem 2.57.

Theorem 2.60 (Whitney’s embedding theorem). Any smooth manifold admits an embedding
into some Euclidean space. □

The proof of the above theorem is omitted here, but an interested reader may consult [War83]
for a detailed discussion of these matters.

Another topic related to this one is the existence of a partition of unity (subordinate to
a given covering). We have seen in the preceding chapter that partitions of unity are useful
objects: Besides allowing one to define the notion of integral, this is an indispensable tool
for various existence questions which were not discussed here because of lack of time. I just
mention two examples here: Using the existence of partitions of unity one can show, and rather
trivially, that any abstract manifold admits a Riemannian metric and that any smooth function
on a submanifold can be obtained as a restriction of a smooth function on an ambient manifold.

Observe that Whitney’s embedding theorem implies the existence of partitions of unity.
Indeed, we have seen that Rn admits a partition of unity subordinate to any open covering. If
M is embedded into Rn, one can simply restrict a given partition of unity to M to obtain the
existence on M .

Exercise 2.61. Check that the proof of Theorem 1.101 goes through for any compact manifold
thus proving directly that compact manifolds admit partitions of unity subordinate to any given
open covering.

Whitney’s embedding theorem shows that any (abstract) manifold M can be thought of as
a submanifold of an Euclidean space. In other words, we could have defined manifolds as
subspaces of Euclidean spaces admitting charts2 at each point. Some authors do take this point

2More precisely, admitting adapted charts.
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of view arguing that this yields the same pool of examples. While it is true of course that
this yields the same pool of examples, manifolds often do not arise as subsets of Euclidean
spaces. For example, the real projective space is not obviously contained in any Euclidean
space (and it is even not so obvious how to construct an embedding). Even if one decides
to work with submanifolds of Euclidean spaces only, one finds pretty soon that certain useful
constructions, for example taking quotients by group actions, are incompatible with this setting.
More importantly, it is useful to distinguish “inner” properties of manifolds from those of an
embedding. All these reasons led to the necessity to separate abstract manifolds from their
particular realizations as submanifolds.

2.8 The tangent bundle
It is convenient to recall certain constructions from linear algebra first. Thus, let V be a vector
space of dimension k. Any basis v = (v1, . . . , vk) of V yields an isomorphism

Rk −→ V, y 7−→
k∑
j=1

yjvj = v · y

Conversely, if φ : Rk −→ V is a linear isomorphism, then the image of the standard basis of Rk

is a basis of V. This yields a bijective correspondence between the set of all bases of V and the
set of all isomorphisms Rk → V.

If w = (w1, . . . ,wk) is another basis of V, we obtain the change-of-basis matrix B as
follows. Writing

wj =
k∑
i=1

bijvi (2.62)

we set B = (bij). Then (2.62) is equivalent to

w = v ·B

where · represents matrix multiplication.

With these preliminaries at hand, suppose that M is a manifold of dimension k. Pick a point
m ∈ M and a chart (U, φ) such that m ∈ U. Denote p := φ (m) ∈ Rk. We obtain a basis of
TmM as follows:

vφ = v :=
(
[γ1] , . . . , [γk]

)
, (2.63)

where γj (t) = φ−1 (p+ tej) and e = (e1, . . . , ek) is the standard basis of Rk, see Remark 2.27.

Remark 2.64. As we have seen in the preceding chapter, for a surface S ⊂ R3 a choice of a
parametrization ψ = ψ(u, v) yields a basis

(
∂uψ, ∂vψ

)
of Tψ(u,v)S. For abstract manifolds

(2.63) plays a rôle similar to the one
(
∂uψ, ∂vψ

)
plays for surfaces.

If
(
Û, φ̂

)
is another chart such that m ∈ Û, we obtain another basis

vφ̂ = v̂ :=
(
[γ̂1] , . . . , [γ̂k]

)
,

where γ̂j (t) = φ̂−1 (p̂+ tej) and p̂ = φ̂ (m).

Proposition 2.65. Let θ := φ̂ ◦ φ−1 : Rk −→ Rk be the coordinate transformation map. Then
the change-of-basis matrix between v and v̂ is Dpθ: v = v̂ ·Dpθ.
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Proof. Without loss of generality we can assume p = 0 = p̂. We have

φ̂ ◦ γj (t) = φ̂ ◦ φ−1︸ ︷︷ ︸
θ

◦φ ◦ γj (t)︸ ︷︷ ︸
tej

= θ (tej) .

Hence,

dmφ̂ [γj] =
d

dt

∣∣∣
t=0
θ (tej) =

k∑
i=1

∂θi
∂xj

ei, (2.66)

where the partial derivatives are evaluated at the origin (suppressed in the notations).
Notice, however,

φ̂ ◦ γ̂i (t) = tei =⇒ dmφ̂ [γ̂i] = ei.

Hence, by (2.66) we obtain

dmφ̂ [γj] =
k∑
i=1

∂θi
∂xj

dmφ̂ ([γ̂i]) = dmφ̂

(
k∑
i=1

∂θi
∂xj

[γ̂i]

)
.

where the second equality holds by the linearity of dmφ̂.
Since φ̂ : Û → φ̂

(
Û
)
⊂ Rk is a diffeomorphism, dmφ̂ is an isomorphism. Hence,

[γj] =
k∑
i=1

∂θi
∂xj

[γ̂i] ,

which finishes the proof. □

Consider the set
TM =

⊔
m∈M

TmM,

where the symbol ⊔ denotes the disjoint union.
This comes equipped with the map

π : TM −→M, π (v) = m⇐⇒ v ∈ TmM.

Example 2.67. Just as in Exercise 2.32 for a vector space V with the help of the canonical
isomorphism TvV ∼= V we obtain

TV =
⊔
v∈V

{v} × V = V × V

and π (v,w) = v is the projection onto the first component.

Furthermore, for any chart (U, φ) on M we have a basis vφ(m) of TmM for each m ∈ U.
Therefore, we obtain the bijection

U× Rk −→ π−1 (U) =
⊔
m∈U

TmM, (m, y) 7−→ vφ (m) · y =
k∑
j=1

yj
[
γmj
]
,

where γmj (t) = φ−1 (φ (m) + tej). Combining this with φ : U → φ (U), which is also a
bijection, we obtain a bijective map

τ = τφ : φ (U)× Rk −→ π−1 (U) , (x, y) 7−→ vφ (m) · y =
∑

yj
[
γmj
]
,

where m = φ−1 (x).
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Theorem 2.68. Let U =
{
(Uα, φα) | α ∈ A

}
be a smooth atlas on M . There exists a unique

Hausdorff second countable topology on TM such that

V =
{ (
π−1 (Uα) , τ

−1
α

)
| α ∈ A

}
is a C0-atlas on TM , where τα = τφα . In fact, V is a smooth atlas so that TM is a smooth
manifold of dimension 2k. Moreover, π is a smooth map with surjective differential at each
point.

Proof. The proof consists of the following steps.

Step 1. For the coordinate transformation Θαβ = τ−1
α

◦ τβ on TM we have

Θαβ (x, y) =
(
θαβ (x) , Dxθαβ · y

)
.

In particular, Θαβ is smooth.

Denote τβ (x, y) = v that is φβ (π (v)) = x and v = vβ
(
φ−1
β (x)

)
·y. Denotingm = φ−1

β (x)
and recalling Proposition 2.65, we obtain

vβ (m) = vα (m)Dxθαβ.

Denoting also τ−1
α (v) = (s, t) ∈ Rk × Rk. Since v = vβ (m) · y = vα ·Dθαβ · y, we obtain

s = φ−1
α (π (v)) = φα

(
φ−1
β (x)

)
= θαβ (x) and t = Dθαβ · y.

Step 2. There is a unique Hausdorff second countable topology on TM such that each τα is a
homeomorphism onto its image.

Declare a set V ⊂ TM open if and only if τ−1
α (V) is open in R2k for any α ∈ A. We have

(i) ∅ is open and τ−1
α (TM) = φα (Uα)× Rk is open.

(ii) V1,V2 are open ⇒ τ−1
α (V1 ∩ V2) = τ−1

α (V1) ∩ τ−1
α (V2) is open ⇒ V1 ∩ V2 is open

(iii) Each Vβ, β ∈ B, is open ⇒ τ−1
α (∪β∈B Vβ) = ∪β∈B τ−1

α (Vβ) is open ⇒ ∪β∈B Vβ is
open.

Hence, we obtain a topology on TM such that each
(
π−1 (Uα) , τ

−1
α

)
is a chart on TM and,

moreover, π is a continuous map.
This topology is Hausdorff. Indeed, pick v1, v2 ∈ TM, v1 ̸= v2 and consider the following

cases:

(a) If π (v1) ̸= π (v2), choose open subsets U1,U2 ⊂M such that U1 and U2 separate π (v1)
and π (v2). Then π−1 (U1) and π−1 (U2) separate π (v1) and π (v2).

(b) If π (v1) = π (v2) =: m. Pick any chart (U, φ) such that m ∈ U. Then τ (U× V1) and
τ (U× V2) separate v1 and v2 if V1,V2 ⊂ Rk separate π2 (τ−1 (v1)) and π2 (τ−1 (v2)).

Furthermore, the constructed topology is second countable for the following reason: Let Ui

be a countable basis of the topology of M and Vj be a countable basis for Rk. Without loss of
generality we can assume that each Ui is contained in some chart Uαi

. Then the collection of
all sets of the form

ταi

(
φαi

(Ui)× Vj

)
is a countable basis for the topology of TM .
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Step 3. We finish the proof of this theorem.

Pick a chart (Uα, φα) on M , hence also a chart
(
π−1 (Uα) , τ

−1
α

)
on TM . The coordinate

representation of π with respect to these charts is

φα ◦ π ◦ τα (x, y) = φα
(
φ−1
α (x)

)
= x =⇒ φα ◦ π ◦ τα = π1.

Hence, π is smooth and dvπ is surjective. □

Let M ⊂ Rn be a submanifold. To simplify the exposition somewhat, assume that M =
f−1(0), where f ∈ C∞(Rn) and 0 is a regular value of f (and, hence, M is a hypersurface).

Let v be any tangent vector at m ∈ M represented by a curve γ through m. Thinking of γ
as a curve in Rn, we obtain a natural well-defined map p : TM → Rn given by p(v) = γ̇(0).
Combining this with the projection π, we obtain the map

i : TM −→ Rn × Rn, i(v) =
(
π(v), p(v)

)
.

Define Φ: Rn×Rn → R2 by Φ(x, y) =
(
f(x), ⟨∇f(x), y⟩

)
. The reader should check that

0 is a regular value of Φ. Moreover, Φ−1(0) = i(TM) and i is an embedding. In particular, the
tangent bundle of a hypersurface is an embedded submanifold.

For example, for M = Sk ⊂ Rk+1, we have

TSk =
{
(x, y) ∈ Sk × Rk+1 | ⟨x, y⟩ = 0

}
⊂ R2k+2.

In particular, for k = 1 we obtain that TS1 is a 2-submanifold of R4.
In fact, we can realize TS1 as a submanifold of R3 in the following sense. Consider the map

f : S1 × R → R4, f(x0, x1; t) = (x0, x1, tx1,−tx0).

One can check that f is a diffeomorphism between S1×R ⊂ R3 and TS1 so that we can in fact
identify TS1 with an infinite cylinder.

It is not too hard to generalize the above arguments to show that ifM ⊂ Rn is any embedded
submanifold, then i : TM → R2n is an embedding. I leave it to the reader to work out the details
of this statement.

2.9 Vector fields and their integral curves
Definition 2.69. A smooth map v : M → TM such that

π ◦ v = idM ⇐⇒ v(m) ∈ TmM

is called a (smooth) vector field on M .

For example, the map

v : S1 → R2, v(x) =
(
x, (−x1, x0)

)
is a (smooth) vector field on S1. Since the first component of v must be x by the very definition
of a vector field, usually one omits the first component and writes simply

v(x) = (−x1, x0). (2.70)

Denote
X(M) :=

{
v : M → TM is a vector field

}
.

Clearly, X(M) is a real vector space with respect to the following operations:
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•
(
v1 + v2

)
(m) := v1(m) + v2(m), where v1, v2 ∈ X(M);

•
(
λv
)
(m) = λv(m), where v ∈ X(M) and λ ∈ R.

In fact, any vector field can be multiplied by any smooth function:(
f · v

)
(m) = f(m)v(m), where v ∈ X(M) and f ∈ C∞(M).

We summarize this in the following.

Proposition 2.71. The set X(M) of all vector fields on M has the structure of a module over
C∞(M) with respect to the pointwise addition and multiplication. □

Example 2.72. Consider M = Rk. We have seen that TRk ∼= Rk × Rk and that the natural
projection equals π1. Hence, a vector field is a map of the form

v(x) =
(
x, y(x)

)
,

where y ∈ C∞(Rk;Rk). Hence, we can identify X(Rk) with C∞(Rk;Rk) via the map

v =
(
idRk , y

)
7→ y.

More formally, this map is an isomorphism of C∞(M)-modules.

Generalizing the above example slightly, pick a chart (U,φ) on a manifold M . Since

vφ(m) :=
(
[γm1 ], . . . , [γmk ]

)
, where γmj (t) := φ−1

(
φ(m) + tej

)
,

is a basis of TmM , we can find the coordinates
(
y1(m), . . . , yk(m)

)
of v(m) with respect to this

basis. In other words, y : U → Rk is a map such that

v(m) = vφ(m) · y(m)

holds at any point m ∈ U . Notice that the map y is well defined even if v is not necessarily
smooth. This map is called the coordinate (or local) representation of v with respect to the
chart (U,φ).

Proposition 2.73. The map v : M → TM satisfying π ◦ v = idM is a smooth vector field if an
only if for each chart (U,φ) as above the coordinate representation y of v is smooth.

Proof. Recall that for any chart (U,φ) on M as above we constructed a chart
(
π−1(U), τ−1

φ

)
on TM . Just by the definitions of τφ and y, for the coordinate representation of v with respect
to these charts we have

τ−1
φ

◦ v ◦ φ−1(x) =
(
x, y ◦ φ−1(x)

)
.

Hence, v is smooth if and only if y is smooth. □

Thus, locally over each chart U vector fields can be identified with smooth vector-valued
maps just as in Example 2.72. It turns out, however, that in general no such identification can
exist.

Let γ : (a, b) → M be a smooth curve. At any point t ∈ (a, b) we define the tangent vector
γ̇(t) ∈ Tγ(t)M to γ by

γ̇(t) :=
[
s 7→ γt(s)

]
where γt(s) := γ(t+ s).
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Definition 2.74 (Integral curves). A (smooth) curve γ is called an integral curve of a vector
field v if

γ̇(t) = v
(
γ(t)

)
holds for any t ∈ (a, b).

Example 2.75. Consider the curve γ : R → S1, γ(t) = (cos t, sin t). We have γ̇(t) =
(− sin t, cos t). Furthermore, if v is given by (2.70), then

v ◦ γ (t) = (− sin t, cos t).

Hence, γ is an integral curve of (2.70).

Let us consider integral curves on Rk in some detail. Thus, represent a vector field v ∈
X(Rk) by a smooth map y : Rk → Rk just as in Example 2.72 above. A map γ : (a, b) → Rk is
an integral curve of v if and only if

γ̇(t) = y
(
γ(t)

)
⇐⇒


γ̇1(t) = y1

(
γ1(t), . . . , γk(t)

)
,

· · · · · · · · ·
γ̇k(t) = yk

(
γ1(t), . . . , γk(t)

)
,

(2.76)

holds for any t ∈ (a, b). In other words, an integral curve of a vector field is a solution of a
system of ordinary differential equations (ODEs). Notice that the map y does not depend on t,
that is (2.76) is an autonomous system of ODEs.

Conversely, any system of ODEs as above, is uniquely specified by a map y ∈ C∞(Rk;Rk).
In view of Example 2.72, y corresponds to a vector field v, whose integral curves are solutions
of the initial system of ODEs. Thus, at least for Euclidean spaces, integral curves of vector
fields and solutions of autonomous systems of ODEs are synonymous.

Exercise 2.77. Show that if γ is a C1-curve satisfying (2.76), then γ is smooth.

Notice that for autonomous systems we have the following property: If γ is a solution
of (2.76) such that γ(t0) = m0, then for any c ∈ (a, b)

γc(t) := γ(t+ c), t ∈ (a− c, b− c)

is also a solution. In other words, the integral curve γ1 of v such that γ1(t1) = m0 satisfies

γ1(t) = γ
(
t+ t0 − t1

)
,

that is γ1 differs from γ just by a shift of time. For this reason, one often chooses t0 = 0 as the
initial time for integral curves of vector fields.

By the main theorem of ODEs [Hal80, Sec.I.3], we obtain the following existence and
uniqueness result.

Theorem 2.78. Let v be a smooth vector field on an open subset Ω ⊂ Rk. For any pointm0 ∈ Ω
there exists a neighbourhood V ⊂ Ω of m0 and a number ε > 0 with the following property:
For any m ∈ V there exists an integral curve

γ = γm : (−ε, ε) → Ω such that γ(0) = m.

This integral curve is unique in the following sense: If β : (−δ, δ) → M is any other integral
curve such that β(0) = m, then β and γm coincide on (−ε, ε) ∩ (−δ, δ). Moreover, the map

Φ: (−ε, ε)× V → Rk, Φ(t,m) := γm(t) (2.79)

is smooth. □
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Definition 2.80. An integral curve γ : (a, b) → M of a vector field v is called maximal, if the
following property holds: For any other integral curve β : (c, d) → M of v such that for some
t0 ∈ (a, b) ∩ (c, d) we have γ(t0) = β(t0), then:

(i) (c, d) ⊂ (a, b);

(ii) β = γ
∣∣
(c,d)

.

It is a well-known fact from the theory of ODEs, that for any m0 ∈ Rk there is a unique
maximal solution of (2.76) through m0. A straightforward corollary is, that for any vector field
v on any manifold M there is a unique maximal integral curve γ of v through a given point.

Corollary 2.81. If M is compact, then a maximal integral curve of any vector field is defined
on all of R.

Proof. For each point m ∈ M pick a chart (U,φ) containing m. Hence, we obtain the
coordinate representation of the vector field v via the map y : Ω := φ(U) → Rk. Then
γ : (a, b) → U is an integral curve of v if and only if for Γ := φ ◦ γ we have

Γ̇(t) = y
(
Γ(t)

)
for t ∈ (a, b),

cf. (2.76). By Theorem 2.78, there exists a neighborhood Vm such that for each m̂ ∈ Vm
the integral curve γm̂ through m̂ is defined on (−εm, εm). By the compactness of M , we
can find a finite collection of points {m1, . . . ,mℓ} such that the corresponding collection of
neighbourhoods

{
Vj := Vmj

| 1 ≤ j ≤ ℓ
}

covers all of M . Set

ε :=
min{εmj

| 1 ≤ j ≤ ℓ }
2

> 0.

Let γ : (a, b) → M be a maximal integral curve of v. Assuming b < ∞, the point m0 :=
γ(b− ε) lies in some Vj . By the construction of ε, there is a unique integral curve γm0 , which is
well-defined on (−2ε, 2ε) and satisfies γm0(0) = m0. Set

γ̂ : (a, b+ ε) →M, γ̂(t) =

{
γ(t) for t ∈ (a, b− ε),

γm0

(
t− b+ ε

)
for t ∈

[
b− ε, b+ ε

)
.

Notice that γ̂ is continuous since γm0(b− ε) = m0 = γ(b− ε). In fact, by construction γ̂ is an
integral curve of v on (a, b− ε)∪ (b− ε, b+ ε). It follows that γ̂ is a C1-integral curve of v and
therefore smooth by Exercise 2.77. Thus, γ̂ is an integral curve of v defined on a larger interval.
This contradicts the maximality of γ. □

2.10 Flows and 1-parameter groups of diffeomorphisms
In this section I assume that M is a compact manifold.

For a vector field v define the flow of v to be the map

Φ: R×M →M, Φ(t,m) = γm(t).

Of course, this is just the map Φ of Theorem 2.78 extended to the whole real line. Sometimes,
(2.79) is referred to as the local flow of v.

Beside the flow, for each fixed t ∈ R it is also convenient to consider

Φt : M →M, Φt(m) = Φ(t,m) = γm(t).
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Proposition 2.82. The following holds:

(i) Each Φt is a diffeomorphism. Moreover, Φ−1
t = Φ−t;

(ii) For any t, s ∈ R we have Φt ◦ Φs = Φt+s = Φs ◦ Φt;

(iii) Φ0 = idM ;

Proof. For m ∈M and t ∈ R denote Φt(m) = m̂. This means that γm(t) = m̂, where γm is an
integral curve of v such that γm(0) = m.

Consider the curve β defined by β(s) = γm(s + t). Then β is an integral curve of v and
β(0) = γm(t) = m̂, that is β = γm̂. Hence,

Φs(m̂) = γm̂(s) = β(s) = γm(s+ t) = Φs+t(m) ⇐⇒ Φs ◦ Φt = Φs+t.

Since (iii) holds by the very definition of Φt, by (ii) we obtain

Φ−t ◦ Φt = idM = Φt ◦ Φ−t.

In particular, each Φt is a diffeomorphism and Φ−1
t = Φ−t □

Definition 2.83. A 1-parameter group of diffeomorphisms is any smooth map Φ: R×M →M
such that Properties (i)–(iii) of Proposition 2.82 hold.

To explain the above definition, notice that the set

Diff(M) :=
{
f : M →M | f is a diffeomorphism

}
is a group with respect to the composition operation. Diff(M) is called the diffeomorphism
group of M . With this understood, a 1-parameter group of diffeomorphisms is simply a homo-
morphism of groups

R → Diff(M), t 7→ Φt

such that Φt(m) = Φ(t,m) depends smoothly on (t,m).
Thus, Proposition 2.82 states that each vector field on a compact manifold generates a 1-

parameter group of diffeomorphisms. Conversely, it turns out that any 1-parameter group of
diffeomorphisms generates a vector field in the following sense.

Proposition 2.84. For any 1-parameter group of diffeomorphisms Φ there exists a vector field
v, whose 1-parameter group of diffeomorphisms coincides with Φ.

Proof. For any m ∈M denote

γm : R →M, γm(t) := Φ(t,m) and v(m) := γ̇m(0).

The reader should check that v is a smooth vector field.
Furthermore, denote γm(t) = m̂ and observe that

γm̂(s) = Φs(m̂) = Φs

(
Φt(m)

)
= Φt+s(m) = γm(t+ s). (2.85)

Hence,

v
(
γm(t)

)
= v
(
m̂
)
= γ̇m̂(0) = [γm̂(s)]s=0 = [γm(t+ s)]s=0 = γ̇m(t),

where it is straight-forward to obtain all above equalities from the corresponding definitions.
Thus, γm is an integral curve of v. Therefore, the 1-parameter group of diffeomorphisms
generated by v is

(t,m) 7→ γm(t) = Φ(t,m),

In other words, the 1-parameter group of diffeomorphisms generated by v coincides with Φ. □

To sum up, for compact manifolds there is a natural bijective correspondence between vector
fields and 1-parameter groups of diffeomorphisms.
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