List of Problems in Global Analysis

- 1. Let M be a closed oriented Riemannian manifold. Show that any solution $\omega \in \Omega^k(M)$ of the equation $\Delta \omega = d\eta$, where $\eta \in \Omega^{k-1}(M)$, is closed.
- 2. Prove that any cohomology class in $H^1_{dR}(\mathbb{R}^2 \setminus \{0\})$ is represented by a harmonic 1-form.
- 3. Prove that on any closed connected oriented Riemannian *n*-manifold, any harmonic *n*-form is proportional to the volume form.
- 4. Let Σ be a Riemann surface.
 - (i) Show that for any holomorphic (1,0) form ζ , the real 1-forms $\operatorname{Re} \zeta$ and $\operatorname{Im} \zeta$ are harmonic.
 - (ii) Show that for any real harmonic 1-form ω there exists a holomorphic (1,0) form ζ such that $\operatorname{Re} \zeta = \omega$.
- 5. Prove that the wedge-product of harmonic forms does not need to be harmonic (*Hint:* Take a compact Riemann surface Σ of genus ≥ 2 . Pick a non-trivial holomorphic (1,0) form ζ . Show that $\operatorname{Re} \zeta \wedge \operatorname{Im} \zeta \neq 0$ must vanish somewhere and therefore cannot be harmonic.)
- 6. Prove that the tangent bundle of the 2-sphere is non-trivial.
- 7. Denote

$$L = \{ ([z], w) \in \mathbb{CP}^1 \times \mathbb{C}^2 \mid w = 0 \text{ or } [w] = [z] \}.$$

Define the projection map $\pi: L \to \mathbb{CP}^1$ by $([z], w) \mapsto [z]$. Show that L is a complex vector bundle of rank 1 over $\mathbb{CP}^1 \cong S^2$. This is called the tautological line bundle of \mathbb{CP}^1 .

8. Let *L* be a complex line bundle bundle, that is a complex vector bundle of rank 1, over S^2 such that *L* admits a trivialization σ_N over $S^2 \setminus \{N\}$ and a trivialization σ_S over $S^2 \setminus \{S\}$, where N = -S is the northern pole¹. This yields a map $g: S^2 \setminus \{S, N\} \to \mathbb{C}^*$ defined by

$$\sigma_S(m) = g(m)\sigma_N(m).$$

The degree of the map $g/|g|: S^1 \to S^1$, where the source $S^1 \subset S^2 \setminus \{S, N\}$ is thought of as the equator, is called the degree of L. Show that the following holds:

- (i) The degree of a complex line bundle is well-defined and depends on the isomorphism class of L only.
- (ii) The degree of the tautological bundle equals -1.
- (iii) The degree of T^*S^2 equals 2. Here T^*S^2 is viewed as a complex line bundle as follows: The Hodge operator on T^*S^2 satisfies $*^2 = -id$. Hence, elements of T^*S^2 can be multiplied by complex numbers: $(a + bi) \cdot \omega := a\omega + b * \omega$.
- (iv) $\deg(L_1 \otimes L_2) = \deg L_1 + \deg L_2$.
- (v) deg $L^* = \deg L$, where $L^* = \operatorname{Hom}(L, \underline{\mathbb{C}})$ is the dual line bundle.
- (vi) For any integer n there exists a complex line bundle L_n such that deg $L_n = n$.

¹One can show that in fact any vector bundle has this property.

- (vii) Two line bundles are isomorphic if and only if their degrees are equal.
- (viii) Prove that the tangent bundle of S^2 is non-trivial.
- 9. Show that any function $f \in H^1(0, 1)$ is continuous without using the Sobolev embedding theorem.
- 10. Show that the function
 - (i) f(x) = |x| belongs to $H^1(-1, 1)$;
 - (ii) $f(x) = |x|^{1/2}$ does not belong to $H^1(-1, 1)$.
- 11. For which values of $a \in \mathbb{R}$ does the function $f(x) = |x|^a$ belong to $H^k(\mathbb{R}^n)$?
- 12. Show that there exists a function $f \in H^1(\mathbb{R}^2)$, which is not continuous.
- 13. Show that the operator

$$L: C^{\infty}(\mathbb{R}^3; \mathbb{H}) \to C^{\infty}(\mathbb{R}^3; \mathbb{H}), \qquad Lu = i \,\partial_x u + j \,\partial_y u + k \,\partial_z u$$

is elliptic, where \mathbb{H} denotes the algebra of quaternions.

- 14. Is the bi-Laplacian $u \mapsto \Delta(\Delta u), u \in C^{\infty}(\mathbb{R}^n)$, an elliptic operator? Is $d + d^* \colon \Omega^k(M) \to \Omega^{k+1}(M) \oplus \Omega^{k-1}(M)$ elliptic? Is $d + d^* \colon \Omega^{\text{even}}(M) \to \Omega^{\text{odd}}(M)$ elliptic, where $\Omega^{\text{even}}(M) := \Omega^0 \oplus \Omega^2 \oplus \ldots$?
- 15. Show that any pseudo-differential operator acting on $C_0^{\infty}(\mathbb{R}^n)$, say, is an integral operator, that is of the form

$$u\mapsto \int_{\mathbb{R}^n} K(x,y)u(y)\,dy.$$

Compute K for the inverse of the standard Laplacian on \mathbb{R}^n .

16. Let

$$\Gamma(E_0) \xrightarrow{L_0} \Gamma(E_1) \xrightarrow{L_1} \Gamma(E_2) \tag{1}$$

be a complex, where both L_0 and L_1 are differential operators. Show that (1) is an elliptic complex if and only if the operator $L_1 + L_0^*$: $\Gamma(E_1) \to \Gamma(E_2) \oplus \Gamma(E_0)$ is elliptic.

17. Prove that a bounded linear operator $T: H_1 \to H_2$, where H_1 and H_2 are Hilbert spaces, is Fredholm if and only if there exist bounded linear maps $S_1, S_2: H_2 \to H_1$ such that

$$S_1 \circ T = \mathrm{id}_{H_1} + R_1$$
 and $T \circ S_2 = \mathrm{id}_{H_2} + R_2$,

where both R_1 and R_2 are compact.