
List of Problems in Global Analysis
1. Let M be a closed oriented Riemannian manifold. Show that any solution ω ∈ Ωk(M) of

the equation ∆ω = dη, where η ∈ Ωk−1(M), is closed.

2. Prove that any cohomology class in H1
dR

(
R2 \ {0}

)
is represented by a harmonic 1-form.

3. Prove that on any closed connected oriented Riemannian n-manifold, any harmonic n-
form is proportional to the volume form.

4. Let Σ be a Riemann surface.

(i) Show that for any holomorphic (1, 0) form ζ , the real 1-forms Re ζ and Im ζ are
harmonic.

(ii) Show that for any real harmonic 1-form ω there exists a holomorphic (1, 0) form ζ
such that Re ζ = ω.

5. Prove that the wedge-product of harmonic forms does not need to be harmonic (Hint:
Take a compact Riemann surface Σ of genus ≥ 2. Pick a non-trivial holomorphic (1, 0)
form ζ . Show that Re ζ ∧ Im ζ ̸= 0 must vanish somewhere and therefore cannot be
harmonic.)

6. Prove that the tangent bundle of the 2-sphere is non-trivial.

7. Denote
L =

{
([z], w) ∈ CP1 × C2 | w = 0 or [w] = [z]

}
.

Define the projection map π : L → CP1 by
(
[z], w

)
7→ [z]. Show that L is a complex

vector bundle of rank 1 over CP1 ∼= S2. This is called the tautological line bundle of
CP1.

8. Let L be a complex line bundle bundle, that is a complex vector bundle of rank 1, over S2

such that L admits a trivialization σN over S2 \{N} and a trivialization σS over S2 \{S},
where N = −S is the northern pole1. This yields a map g : S2 \{S,N} → C∗ defined by

σS(m) = g(m)σN(m).

The degree of the map g/|g| : S1 → S1, where the source S1 ⊂ S2 \ {S,N} is thought
of as the equator, is called the degree of L. Show that the following holds:

(i) The degree of a complex line bundle is well-defined and depends on the isomorphism
class of L only.

(ii) The degree of the tautological bundle equals −1.

(iii) The degree of T ∗S2 equals 2. Here T ∗S2 is viewed as a complex line bundle as
follows: The Hodge operator on T ∗S2 satisfies ∗2 = −id. Hence, elements of T ∗S2

can be multiplied by complex numbers: (a+ bi) · ω := aω + b ∗ ω.

(iv) deg(L1 ⊗ L2) = degL1 + degL2.

(v) degL∗ = − degL, where L∗ = Hom(L,C) is the dual line bundle.

(vi) For any integer n there exists a complex line bundle Ln such that degLn = n.
1One can show that in fact any vector bundle has this property.
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(vii) Two line bundles are isomorphic if and only if their degrees are equal.

(viii) Prove that the tangent bundle of S2 is non-trivial.

9. Show that any function f ∈ H1(0, 1) is continuous without using the Sobolev embedding
theorem.

10. Show that the function

(i) f(x) = |x| belongs to H1(−1, 1);

(ii) f(x) = |x|1/2 does not belong to H1(−1, 1).

11. For which values of a ∈ R does the function f(x) = |x|a belong to Hk(Rn)?

12. Show that there exists a function f ∈ H1(R2), which is not continuous.

13. Show that the operator

L : C∞(R3;H) → C∞(R3;H), Lu = i ∂xu+ j ∂yu+ k ∂zu

is elliptic, where H denotes the algebra of quaternions.

14. Is the bi-Laplacian u 7→ ∆(∆u), u ∈ C∞(Rn), an elliptic operator? Is d+d∗ : Ωk(M) →
Ωk+1(M)⊕Ωk−1(M) elliptic? Is d+d∗ : Ωeven(M) → Ωodd(M) elliptic, where Ωeven(M) :=
Ω0 ⊕ Ω2 ⊕ . . .?

15. Show that any pseudo-differential operator acting on C∞
0 (Rn), say, is an integral operator,

that is of the form
u 7→

∫
Rn

K(x, y)u(y) dy.

Compute K for the inverse of the standard Laplacian on Rn.

16. Let
Γ(E0)

L0−−→ Γ(E1)
L1−−→ Γ(E2) (1)

be a complex, where both L0 and L1 are differential operators. Show that (1) is an elliptic
complex if and only if the operator L1 + L∗

0 : Γ(E1) → Γ(E2)⊕ Γ(E0) is elliptic.

17. Prove that a bounded linear operator T : H1 → H2, where H1 and H2 are Hilbert spaces,
is Fredholm if and only if there exist bounded linear maps S1, S2 : H2 → H1 such that

S1 ◦ T = idH1 +R1 and T ◦ S2 = idH2 +R2,

where both R1 and R2 are compact.
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