List of Problems in Global Analysis

1. Let M be a closed oriented Riemannian manifold. Show that any solution $\omega \in \Omega^{k}(M)$ of the equation $\Delta \omega=d \eta$, where $\eta \in \Omega^{k-1}(M)$, is closed.
2. Prove that any cohomology class in $H_{d R}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ is represented by a harmonic 1-form.
3. Prove that on any closed connected oriented Riemannian n-manifold, any harmonic n form is proportional to the volume form.
4. Let Σ be a Riemann surface.
(i) Show that for any holomorphic $(1,0)$ form ζ, the real 1-forms $\operatorname{Re} \zeta$ and $\operatorname{Im} \zeta$ are harmonic.
(ii) Show that for any real harmonic 1-form ω there exists a holomorphic $(1,0)$ form ζ such that $\operatorname{Re} \zeta=\omega$.
5. Prove that the wedge-product of harmonic forms does not need to be harmonic (Hint: Take a compact Riemann surface Σ of genus ≥ 2. Pick a non-trivial holomorphic (1,0) form ζ. Show that $\operatorname{Re} \zeta \wedge \operatorname{Im} \zeta \neq 0$ must vanish somewhere and therefore cannot be harmonic.)
6. Prove that the tangent bundle of the 2 -sphere is non-trivial.
7. Denote

$$
L=\left\{([z], w) \in \mathbb{C P}^{1} \times \mathbb{C}^{2} \mid w=0 \text { or }[w]=[z]\right\} .
$$

Define the projection map $\pi: L \rightarrow \mathbb{C P}^{1}$ by $([z], w) \mapsto[z]$. Show that L is a complex vector bundle of rank 1 over $\mathbb{C P}^{1} \cong S^{2}$. This is called the tautological line bundle of $\mathbb{C P}^{1}$.
8. Let L be a complex line bundle bundle, that is a complex vector bundle of rank 1 , over S^{2} such that L admits a trivialization σ_{N} over $S^{2} \backslash\{N\}$ and a trivialization σ_{S} over $S^{2} \backslash\{S\}$, where $N=-S$ is the northern pole ${ }^{1}$. This yields a map $g: S^{2} \backslash\{S, N\} \rightarrow \mathbb{C}^{*}$ defined by

$$
\sigma_{S}(m)=g(m) \sigma_{N}(m) .
$$

The degree of the map $g /|g|: S^{1} \rightarrow S^{1}$, where the source $S^{1} \subset S^{2} \backslash\{S, N\}$ is thought of as the equator, is called the degree of L. Show that the following holds:
(i) The degree of a complex line bundle is well-defined and depends on the isomorphism class of L only.
(ii) The degree of the tautological bundle equals -1 .
(iii) The degree of $T^{*} S^{2}$ equals 2 . Here $T^{*} S^{2}$ is viewed as a complex line bundle as follows: The Hodge operator on $T^{*} S^{2}$ satisfies $*^{2}=-i d$. Hence, elements of $T^{*} S^{2}$ can be multiplied by complex numbers: $(a+b i) \cdot \omega:=a \omega+b * \omega$.
(iv) $\operatorname{deg}\left(L_{1} \otimes L_{2}\right)=\operatorname{deg} L_{1}+\operatorname{deg} L_{2}$.
(v) $\operatorname{deg} L^{*}=-\operatorname{deg} L$, where $L^{*}=\operatorname{Hom}(L, \mathbb{C})$ is the dual line bundle.
(vi) For any integer n there exists a complex line bundle L_{n} such that deg $L_{n}=n$.

[^0](vii) Two line bundles are isomorphic if and only if their degrees are equal.
(viii) Prove that the tangent bundle of S^{2} is non-trivial.
9. Show that any function $f \in H^{1}(0,1)$ is continuous without using the Sobolev embedding theorem.
10. Show that the function
(i) $f(x)=|x|$ belongs to $H^{1}(-1,1)$;
(ii) $f(x)=|x|^{1 / 2}$ does not belong to $H^{1}(-1,1)$.
11. For which values of $a \in \mathbb{R}$ does the function $f(x)=|x|^{a}$ belong to $H^{k}\left(\mathbb{R}^{n}\right)$?
12. Show that there exists a function $f \in H^{1}\left(\mathbb{R}^{2}\right)$, which is not continuous.
13. Show that the operator
$$
L: C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{H}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{H}\right), \quad L u=i \partial_{x} u+j \partial_{y} u+k \partial_{z} u
$$
is elliptic, where \mathbb{H} denotes the algebra of quaternions.
14. Is the bi-Laplacian $u \mapsto \Delta(\Delta u), u \in C^{\infty}\left(\mathbb{R}^{n}\right)$, an elliptic operator? Is $d+d^{*}: \Omega^{k}(M) \rightarrow$ $\Omega^{k+1}(M) \oplus \Omega^{k-1}(M)$ elliptic? Is $d+d^{*}: \Omega^{\text {even }}(M) \rightarrow \Omega^{\text {odd }}(M)$ elliptic, where $\Omega^{\text {even }}(M):=$ $\Omega^{0} \oplus \Omega^{2} \oplus \ldots$?
15. Show that any pseudo-differential operator acting on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, say, is an integral operator, that is of the form
$$
u \mapsto \int_{\mathbb{R}^{n}} K(x, y) u(y) d y .
$$

Compute K for the inverse of the standard Laplacian on \mathbb{R}^{n}.
16. Let

$$
\begin{equation*}
\Gamma\left(E_{0}\right) \xrightarrow{L_{0}} \Gamma\left(E_{1}\right) \xrightarrow{L_{1}} \Gamma\left(E_{2}\right) \tag{1}
\end{equation*}
$$

be a complex, where both L_{0} and L_{1} are differential operators. Show that (1) is an elliptic complex if and only if the operator $L_{1}+L_{0}^{*}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{2}\right) \oplus \Gamma\left(E_{0}\right)$ is elliptic.
17. Prove that a bounded linear operator $T: H_{1} \rightarrow H_{2}$, where H_{1} and H_{2} are Hilbert spaces, is Fredholm if and only if there exist bounded linear maps $S_{1}, S_{2}: H_{2} \rightarrow H_{1}$ such that

$$
S_{1} \circ T=\operatorname{id}_{H_{1}}+R_{1} \quad \text { and } \quad T \circ S_{2}=\operatorname{id}_{H_{2}}+R_{2},
$$

where both R_{1} and R_{2} are compact.

[^0]: ${ }^{1}$ One can show that in fact any vector bundle has this property.

