List of Problems in Global Analysis

- 1. Let M be a closed oriented Riemannian manifold. Show that any solution $\omega \in \Omega^k(M)$ of the equation $\Delta \omega = d\eta$, where $\eta \in \Omega^{k-1}(M)$, is closed.
- 2. Prove that any cohomology class in $H^1_{dR}(\mathbb{R}^2 \setminus \{0\})$ is represented by a harmonic 1-form.
- 3. Prove that on any closed connected oriented Riemannian *n*-manifold, any harmonic *n*-form is proportional to the volume form.
- 4. Let D be the disc in \mathbb{R}^2 of unit radius centered at the origin. Find the dimension of the space

$$\left\{\omega \in \Omega^1(D) \mid d\omega = 0 = d^*\omega, \ \omega(\partial_n) = 0\right\}$$

where ∂_n is the unit normal field along ∂D . Also, show that the space

$$\left\{\omega \in \Omega^1(D) \mid \Delta \omega = 0, \ \omega(\partial_n) = 0\right\},\$$

is infinite dimensional.

5. Let M^2 be an oriented surface equipped with a Riemannian metric g. For an everywhere positive function u, denote $g_u := u^2 g$. Show that if $\omega \in \Omega^k(M)$, k = 0, 1, 2, we have

$$\Delta_g \omega = 0 \qquad \Longleftrightarrow \qquad \Delta_{g_u} \omega = 0.$$

- 6. Show that a k-form ω is harmonic if and only if $*\omega$ is harmonic.
- 7. Let M be a closed oriented Riemannian four-manifold. Since for the *-operator acting on $\Lambda^2 T^* M$ we have $*^2 = id$, the bundle of 2-forms splits into the ± 1 -eigenspaces: $\Lambda^2 T^* M = \Lambda^2_+ T^* M \oplus \Lambda^2_- T^* M$.
 - (a) Show that $\dim \Lambda^2_+ T^*_m M = \dim \Lambda^2_- T^*_m M$ for each $m \in M$;
 - (b) Show that $H^2_{dR}(M)$ splits as $H^2_+(M) \oplus H^2_-(M)$, where $H^2_\pm(M)$ is the maximal positive/negative subspace of the symmetric bilinear form

$$(\omega,\eta)\mapsto \int_M\omega\wedge\eta$$

(c) Show that the sequence

$$0 \longrightarrow \Omega^0(M) \xrightarrow{d} \Omega^1(M) \xrightarrow{d^{\pm}} \Omega^2_{\pm}(M) \to 0 \tag{1}$$

is a complex, whose homology groups are isomorphic to

$$H^0(M), H^1(M),$$
 and $H^2_+(M).$

8. Denote by $\mathcal{H}^k(M)$ the space of all harmonic k-forms on a closed oriented Riemannian manifold M. Assuming that $\mathcal{H}^k(M)$ is finite-dimensional, show that for any we have the decomposition

$$\Omega^k(M) = \operatorname{Im} d \oplus \mathcal{H}^k \oplus \operatorname{Im} d^*,$$

which is in fact L^2 -orthogonal.

- 9. Let Σ be a Riemann surface.
 - (i) Show that for any holomorphic (1,0) form ζ , the real 1-forms $\operatorname{Re} \zeta$ and $\operatorname{Im} \zeta$ are harmonic.
 - (ii) Show that for any real harmonic 1-form ω there exists a holomorphic (1,0) form ζ such that $\operatorname{Re} \zeta = \omega$.
- 10. Let M and N be two closed orientable manifolds of the same dimension n. Assume, moreover, that N is connected. Pick $\omega \in \Omega^n(N)$ such that $\int_N \omega = 1$ and define deg $f = \int_M f^* \omega$.
 - (i) Show that $\deg f$ is well-defined;
 - (ii) Show that $\deg f$ is in fact an integer;
 - (iii) Show that f is surjective whenever $\deg f \neq 0$;
 - (iv) Let $f: \Sigma_1 \to \Sigma_2$ be a holomorphic map between compact Riemann surfaces and let F(z) be a coordinate representation of f with respect to a local holomorphic coordinate z centered at some $p \in \Sigma_1$ (and a local holomorphic coordinate on Σ_2). A non-negative integer m = m(p) is said to be a multiplicity of f at p if F can be represented in the form $F(z) = F(0) + z^m F_1(z)$, where $F_1(0) \neq 0$. Show that for any $q \in \Sigma_2$ we have

$$\deg f = \sum_{p \in f^{-1}(q)} m(q)$$

- (v) Let $f: \Sigma_1 \to \Sigma_2$ be a holomorphic map between compact Riemann surfaces. Show that deg $f \ge 0$. Moreover, deg f = 0 if and only if f is constant and deg f = 1 if and only if f is a biholomorphism.
- (vi) Prove the following: If a compact Riemann surface Σ admits a meromorphic function with a unique simple pole, then Σ is biholomorphic to \mathbb{CP}^1 .
- 11. Let Σ be a Riemann surface diffeomorphic (homeomorphic) to the torus. Prove that for any two distinct points $p_1, p_2 \in \Sigma$ there exists a meromorphic function f on Σ such that both p_1 and p_2 are simple poles of f and f is holomorphic on $\Sigma \setminus \{p_1, p_2\}$. Also, show that the following limiting case holds: for any $p \in \Sigma$ there exists a meromorphic function g with a unique pole at p of order 2.
- 12. Prove that the wedge-product of harmonic forms does not need to be harmonic (*Hint:* Take a compact Riemann surface Σ of genus ≥ 2 . Pick a non-trivial holomorphic (1,0) form ζ . Show that $\operatorname{Re} \zeta \wedge \operatorname{Im} \zeta \neq 0$ must vanish somewhere and therefore cannot be harmonic.)
- 13. Prove that the tangent bundle of the 2-sphere is non-trivial.
- 14. Show that there is a non-trivial bundle $E \to M$ such that $E \oplus \mathbb{R}^k$ is trivial, where \mathbb{R}^k denotes the trivial vector bundle of rank k.
- 15. Let $E \to I = [0, 1]$ be a vector bundle.
 - (a) Pick a connection ∇ on E. Show that for any $v \in E_0$ there exists a unique section s_v such that $\nabla s_v = 0$ and $s_v(0) = v$.
 - (b) Show that any bundle $E \to I$ is trivial.

- (c) Show that for any vector bundle $E \to M \times I$ we have $E \cong \pi_1^* E|_{M \times \{0\}} = E|_{M \times \{0\}} \times I$, where $\pi_1 \colon M \times I \to M$ is the natural projection.
- (d) Let $f_0, f_1: M \to N$ be two smoothly homotopic maps. Show that $f_0^* E \cong f_1^* E$ for any vector bundle $E \to N$.
- (e) Show that any vector bundle over a contractible base is trivial.
- 16. Denote

 $L = \left\{ ([z], w) \in \mathbb{CP}^1 \times \mathbb{C}^2 \mid w = 0 \text{ or } [w] = [z] \right\}.$

Define the projection map $\pi: L \to \mathbb{CP}^1$ by $([z], w) \mapsto [z]$. Show that L is a complex vector bundle of rank 1 over $\mathbb{CP}^1 \cong S^2$. This is called the tautological line bundle of \mathbb{CP}^1 .

17. Let L be a complex line bundle bundle, that is a complex vector bundle of rank 1, over S^2 such that L admits a trivialization σ_N over $S^2 \setminus \{N\}$ and a trivialization σ_S over $S^2 \setminus \{S\}$, where N = -S is the northern pole¹. This yields a map $g: S^2 \setminus \{S, N\} \to \mathbb{C}^*$ defined by

$$\sigma_S(m) = g(m)\sigma_N(m).$$

The degree of the map $g/|g|: S^1 \to S^1$, where the source $S^1 \subset S^2 \setminus \{S, N\}$ is thought of as the equator, is called the degree of L. Show that the following holds:

- (i) The degree of a complex line bundle is well-defined and depends on the isomorphism class of L only.
- (ii) The degree of the tautological bundle equals -1.
- (iii) The degree of T^*S^2 equals 2. Here T^*S^2 is viewed as a complex line bundle as follows: The Hodge operator on T^*S^2 satisfies $*^2 = -id$. Hence, elements of T^*S^2 can be multiplied by complex numbers: $(a + bi) \cdot \omega := a\omega + b * \omega$.
- (iv) $\deg(L_1 \otimes L_2) = \deg L_1 + \deg L_2$.
- (v) deg $L^* = \deg L$, where $L^* = \operatorname{Hom}(L, \underline{\mathbb{C}})$ is the dual line bundle.
- (vi) For any integer n there exists a complex line bundle L_n such that $\deg L_n = n$.
- (vii) Two line bundles are isomorphic if and only if their degrees are equal.
- (viii) Prove that the tangent bundle of S^2 is non-trivial.
- (a) Let E → M be a vector bundle and F → M be a subbundle of E. Show that there is a subbundle G ⊂ E such that E = F ⊕ G. In other words, any short exact sequence of vector bundles 0 → F → E → G → 0 splits.
 - (b) Prove that for any vector bundle E over a compact² base M there exists a vector bundle F such that $E \oplus F$ is trivial.
 - (c) Denote by $\operatorname{Gr}_k(\mathbb{R}^n)$ the Grassmannian of all k-dimensional subspaces in \mathbb{R}^n . Let

$$E_{k,n} := \left\{ (x, V) \in \mathbb{R}^n \times \operatorname{Gr}_k(\mathbb{R}^n) \mid x \in V \right\}$$

be the tautological bundle over $\operatorname{Gr}_k(\mathbb{R}^n)$, cf. Problem 16. Show that for any rank k vector bundle E over a compact manifold M there exists a (smooth) map $f: M \to \operatorname{Gr}_k(\mathbb{R}^n)$ such that $E \cong f^*E_{k,n}$.

¹In fact any vector bundle has this property by Problem 15 (e).

²This is true for any manifold, however, a solution is slightly simpler if one assumes the base to be compact.

- 19. Show that any function $f \in H^1(0, 1)$ is continuous without using the Sobolev embedding theorem.
- 20. Show that the function
 - (i) f(x) = |x| belongs to $H^1(-1, 1)$;
 - (ii) $f(x) = |x|^{1/2}$ does not belong to $H^1(-1, 1)$.
- 21. For which values of $a \in \mathbb{R}$ does the function $f(x) = |x|^a$ belong to $H^k(\mathbb{R}^n)$?
- 22. Show that there exists a function $f \in H^1(\mathbb{R}^2)$, which is not continuous.
- 23. (a) Prove the following simple version of the Sobolev embedding theorem: Show that $H^1(0, 1)$ embeds into the Hölder space $C^{0,1/2}(0, 1)$.
 - (b) Prove that the embedding $H^1(0,1) \to C^0(0,1)$ is compact.
- 24. Let $q: H \times H \to \mathbb{R}$ be a symmetric bilinear form on a Hilbert space H with the following property: for any $u \in H$ there is some constant C(u) > 0 such that $|q(u, v)| \leq C(u) ||v||$ for all $v \in H$. Show that there exists a symmetric bounded linear operator $Q: H \to H$ such that $\langle Qu, v \rangle = q(u, v)$.
- 25. (a) Let $\Omega \subset \mathbb{R}^n$ be a bounded domain (with a smooth boundary). Prove that the Poincaré inequality

$$\|u\|_{L^2(\Omega)} \le C \|\nabla u\|_{L^2(\Omega)}$$

holds for any $u \in C_0^1(\Omega) := \{u \in C^1(\mathbb{R}^n) \mid \text{supp } u \subset \Omega\}$. Here the constant C may depend³ on Ω , but not on u.

Remark: One can show that for any $u \in H^1(\Omega)$ the trace $u|_{\partial\Omega}$ is well defined as an L^2 -function, for example. With this at hand, one can define $H^1_0(\Omega)$ as a subspace of H^1 -functions with vanishing trace on the boundary.

(b) Define $H_0^1(\Omega)$ as a completion of $C_0^1(\Omega)$ with respect to the H^1 -norm: $H_0^1(\Omega) := \overline{C_0^1(\Omega)}_{\|\cdot\|_{H^1}}$. Show that

$$a(u,v) := \int_{\Omega} \langle \nabla u, \nabla v \rangle$$

is a scalar product on $H_0^1(\Omega)$ equivalent to the standard one, i.e., there exist positive constants c and C such that

$$c \|u\|_{H^1} \le a(u, u)^{1/2} \le C \|u\|_{H^1}$$

holds for all $u \in H_0^1(\Omega)$.

(c) A function $u \in H_0^1(\Omega)$ is called *a weak solution* of the Poisson equation

$$\Delta u = f, \qquad u|_{\partial\Omega} = 0$$

if $a(u, \varphi) = \langle f, \varphi \rangle_{L^2}$ holds for any $\varphi \in C_0^{\infty}(\Omega)$, where $f \in C^0(\overline{\Omega})$. Show that any strong solution $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ of the Poisson equation is its weak solution.

(d) Show that the Poisson equation has a weak solution $u \in H_0^1(\Omega)$.

³One can show that C may be chosen to be independent of Ω , but the proof of this is somewhat more elaborate.

- (e) Show that the energy functional E_f: H¹₀(Ω) → ℝ, E_f(u) = ||∇u||²_{L²} ⟨f, u⟩_{L²} is bounded from below and E_f attains its infimum. Moreover, if u is a point of minimum of E_f and u ∈ C²(Ω) ∩ C⁰(Ω), then u is a strong solution of the Poisson equation.
- 26. Let $E \to M$ be a vector bundle. Compute the symbol of an arbitrary connection ∇ on E.
- 27. Compute the symbol of $d^* \colon \Omega^{k+1}(M) \to \Omega^k(M)$.
- 28. For a complex manifold M, compute the symbol of the Dolbeault operator $\bar{\partial} \colon \Omega^{p,q}(M) \to \Omega^{p,q+1}(M)$.
- 29. Show that the operator

$$L: C^{\infty}(\mathbb{R}^3; \mathbb{H}) \to C^{\infty}(\mathbb{R}^3; \mathbb{H}), \qquad Lu = i \,\partial_x u + j \,\partial_y u + k \,\partial_z u$$

is elliptic, where $\mathbb H$ denotes the algebra of quaternions.

- 30. Is the bi-Laplacian $u \mapsto \Delta(\Delta u), u \in C^{\infty}(\mathbb{R}^n)$, an elliptic operator? Is $d + d^* \colon \Omega^k(M) \to \Omega^{k+1}(M) \oplus \Omega^{k-1}(M)$ elliptic? Is $d + d^* \colon \Omega^{\text{even}}(M) \to \Omega^{\text{odd}}(M)$ elliptic, where $\Omega^{\text{even}}(M) := \Omega^0 \oplus \Omega^2 \oplus \ldots$?
- 31. Show that any pseudo-differential operator acting on $C_0^{\infty}(\mathbb{R}^n)$, say, is an integral operator, that is of the form

$$u \mapsto \int_{\mathbb{R}^n} K(x, y) u(y) \, dy.$$

Compute K for the inverse of the standard Laplacian on \mathbb{R}^n .

32. Let

$$\Gamma(E_0) \xrightarrow{L_0} \Gamma(E_1) \xrightarrow{L_1} \Gamma(E_2)$$
(2)

be a complex, where both L_0 and L_1 are differential operators. Show that (2) is an elliptic complex if and only if the operator $L_1 + L_0^* \colon \Gamma(E_1) \to \Gamma(E_2) \oplus \Gamma(E_0)$ is elliptic.

- 33. Show that Atiyah's complex (1) is elliptic.
- 34. Prove that a bounded linear operator $T: H_1 \to H_2$, where H_1 and H_2 are Hilbert spaces, is Fredholm if and only if there exist bounded linear maps $S_1, S_2: H_2 \to H_1$ such that

$$S_1 \circ T = \operatorname{id}_{H_1} + R_1$$
 and $T \circ S_2 = \operatorname{id}_{H_2} + R_2$,

where both R_1 and R_2 are compact.