
List of Problems in Global Analysis
1. Let M be a closed oriented Riemannian manifold. Show that any solution ω ∈ Ωk(M) of

the equation ∆ω = dη, where η ∈ Ωk−1(M), is closed.

2. Prove that any cohomology class in H1
dR

(
R2 \ {0}

)
is represented by a harmonic 1-form.

3. Prove that on any closed connected oriented Riemannian n-manifold, any harmonic n-
form is proportional to the volume form.

4. Let D be the disc in R2 of unit radius centered at the origin. Find the dimension of the
space {

ω ∈ Ω1(D) | dω = 0 = d∗ω, ω(∂n) = 0
}
,

where ∂n is the unit normal field along ∂D. Also, show that the space{
ω ∈ Ω1(D) | ∆ω = 0, ω(∂n) = 0

}
,

is infinite dimensional.

5. Let M2 be an oriented surface equipped with a Riemannian metric g. For an everywhere
positive function u, denote gu := u2g. Show that if ω ∈ Ωk(M), k = 0, 1, 2, we have

∆gω = 0 ⇐⇒ ∆guω = 0.

6. Show that a k-form ω is harmonic if and only if ∗ω is harmonic.

7. Let M be a closed oriented Riemannian four-manifold. Since for the ∗-operator acting
on Λ2T ∗M we have ∗2 = id, the bundle of 2-forms splits into the ±1-eigenspaces:
Λ2T ∗M = Λ2

+T
∗M ⊕ Λ2

−T
∗M .

(a) Show that dimΛ2
+T

∗
mM = dimΛ2

−T
∗
mM for each m ∈ M ;

(b) Show that H2
dR(M) splits as H2

+(M) ⊕ H2
−(M), where H2

±(M) is the maximal
positive/negative subspace of the symmetric bilinear form

(ω, η) 7→
∫
M

ω ∧ η;

(c) Show that the sequence

0 −→ Ω0(M)
d−→ Ω1(M)

d±−−→ Ω2
±(M) → 0 (1)

is a complex, whose homology groups are isomorphic to

H0(M), H1(M), and H2
±(M).

8. Denote by Hk(M) the space of all harmonic k-forms on a closed oriented Riemannian
manifold M . Assuming that Hk(M) is finite-dimensional, show that for any we have the
decomposition

Ωk(M) = Im d⊕Hk ⊕ Im d∗,

which is in fact L2-orthogonal.



List of Problems in Global Analysis

9. Let Σ be a Riemann surface.

(i) Show that for any holomorphic (1, 0) form ζ , the real 1-forms Re ζ and Im ζ are
harmonic.

(ii) Show that for any real harmonic 1-form ω there exists a holomorphic (1, 0) form ζ
such that Re ζ = ω.

10. Let M and N be two closed orientable manifolds of the same dimension n. Assume,
moreover, that N is connected. Pick ω ∈ Ωn(N) such that

∫
N
ω = 1 and define deg f =∫

M
f ∗ω.

(i) Show that deg f is well-defined;

(ii) Show that deg f is in fact an integer;

(iii) Show that f is surjective whenever deg f ̸= 0;

(iv) Let f : Σ1 → Σ2 be a holomorphic map between compact Riemann surfaces and
let F (z) be a coordinate representation of f with respect to a local holomorphic
coordinate z centered at some p ∈ Σ1 (and a local holomorphic coordinate on Σ2).
A non-negative integer m = m(p) is said to be a multiplicity of f at p if F can be
represented in the form F (z) = F (0) + zmF1(z), where F1(0) ̸= 0. Show that for
any q ∈ Σ2 we have

deg f =
∑

p∈f−1(q)

m(q).

(v) Let f : Σ1 → Σ2 be a holomorphic map between compact Riemann surfaces. Show
that deg f ≥ 0. Moreover, deg f = 0 if and only if f is constant and deg f = 1 if
and only if f is a biholomorphism.

(vi) Prove the following: If a compact Riemann surface Σ admits a meromorphic function
with a unique simple pole, then Σ is biholomorphic to CP1.

11. Let Σ be a Riemann surface diffeomorphic (homeomorphic) to the torus. Prove that for
any two distinct points p1, p2 ∈ Σ there exists a meromorphic function f on Σ such that
both p1 and p2 are simple poles of f and f is holomorphic on Σ \ {p1, p2}. Also, show
that the following limiting case holds: for any p ∈ Σ there exists a meromorphic function
g with a unique pole at p of order 2.

12. Prove that the wedge-product of harmonic forms does not need to be harmonic (Hint:
Take a compact Riemann surface Σ of genus ≥ 2. Pick a non-trivial holomorphic (1, 0)
form ζ . Show that Re ζ ∧ Im ζ ̸= 0 must vanish somewhere and therefore cannot be
harmonic.)

13. Prove that the tangent bundle of the 2-sphere is non-trivial.

14. Show that there is a non-trivial bundle E → M such that E ⊕ Rk is trivial, where Rk

denotes the trivial vector bundle of rank k.

15. Let E → I = [0, 1] be a vector bundle.

(a) Pick a connection ∇ on E. Show that for any v ∈ E0 there exists a unique section
sv such that ∇sv = 0 and sv(0) = v.

(b) Show that any bundle E → I is trivial.
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(c) Show that for any vector bundle E → M×I we have E ∼= π∗
1E|M×{0} = E|M×{0}×

I , where π1 : M × I → M is the natural projection.

(d) Let f0, f1 : M → N be two smoothly homotopic maps. Show that f ∗
0E

∼= f ∗
1E for

any vector bundle E → N .

(e) Show that any vector bundle over a contractible base is trivial.

16. Denote
L =

{
([z], w) ∈ CP1 × C2 | w = 0 or [w] = [z]

}
.

Define the projection map π : L → CP1 by
(
[z], w

)
7→ [z]. Show that L is a complex

vector bundle of rank 1 over CP1 ∼= S2. This is called the tautological line bundle of
CP1.

17. Let L be a complex line bundle bundle, that is a complex vector bundle of rank 1, over S2

such that L admits a trivialization σN over S2 \{N} and a trivialization σS over S2 \{S},
where N = −S is the northern pole1. This yields a map g : S2 \{S,N} → C∗ defined by

σS(m) = g(m)σN(m).

The degree of the map g/|g| : S1 → S1, where the source S1 ⊂ S2 \ {S,N} is thought
of as the equator, is called the degree of L. Show that the following holds:

(i) The degree of a complex line bundle is well-defined and depends on the isomorphism
class of L only.

(ii) The degree of the tautological bundle equals −1.

(iii) The degree of T ∗S2 equals 2. Here T ∗S2 is viewed as a complex line bundle as
follows: The Hodge operator on T ∗S2 satisfies ∗2 = −id. Hence, elements of T ∗S2

can be multiplied by complex numbers: (a+ bi) · ω := aω + b ∗ ω.

(iv) deg(L1 ⊗ L2) = degL1 + degL2.

(v) degL∗ = − degL, where L∗ = Hom(L,C) is the dual line bundle.

(vi) For any integer n there exists a complex line bundle Ln such that degLn = n.

(vii) Two line bundles are isomorphic if and only if their degrees are equal.

(viii) Prove that the tangent bundle of S2 is non-trivial.

18. (a) Let E → M be a vector bundle and F → M be a subbundle of E. Show that there is
a subbundle G ⊂ E such that E = F ⊕G. In other words, any short exact sequence
of vector bundles 0 → F → E → G → 0 splits.

(b) Prove that for any vector bundle E over a compact2 base M there exists a vector
bundle F such that E ⊕ F is trivial.

(c) Denote by Grk(Rn) the Grassmannian of all k-dimensional subspaces in Rn. Let

Ek,n :=
{
(x, V ) ∈ Rn ×Grk(Rn) | x ∈ V

}
be the tautological bundle over Grk(Rn), cf. Problem 16. Show that for any rank k
vector bundle E over a compact manifold M there exists a (smooth) map f : M →
Grk(Rn) such that E ∼= f ∗Ek,n.

1In fact any vector bundle has this property by Problem 15 (e).
2This is true for any manifold, however, a solution is slightly simpler if one assumes the base to be compact.
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19. Show that any function f ∈ H1(0, 1) is continuous without using the Sobolev embedding
theorem.

20. Show that the function

(i) f(x) = |x| belongs to H1(−1, 1);

(ii) f(x) = |x|1/2 does not belong to H1(−1, 1).

21. For which values of a ∈ R does the function f(x) = |x|a belong to Hk(Rn)?

22. Show that there exists a function f ∈ H1(R2), which is not continuous.

23. (a) Prove the following simple version of the Sobolev embedding theorem: Show that
H1(0, 1) embeds into the Hölder space C0,1/2(0, 1).

(b) Prove that the embedding H1(0, 1) → C0(0, 1) is compact.

24. Let q : H×H → R be a symmetric bilinear form on a Hilbert space H with the following
property: for any u ∈ H there is some constant C(u) > 0 such that |q(u, v)| ≤ C(u)∥v∥
for all v ∈ H . Show that there exists a symmetric bounded linear operator Q : H → H
such that ⟨Qu, v⟩ = q(u, v).

25. (a) Let Ω ⊂ Rn be a bounded domain (with a smooth boundary). Prove that the
Poincaré inequality

∥u∥L2(Ω) ≤ C∥∇u∥L2(Ω)

holds for any u ∈ C1
0(Ω) := {u ∈ C1(Rn) | suppu ⊂ Ω}. Here the constant C

may depend3 on Ω, but not on u.
Remark: One can show that for any u ∈ H1(Ω) the trace u|∂Ω is well defined as an
L2-function, for example. With this at hand, one can define H1

0 (Ω) as a subspace of
H1-functions with vanishing trace on the boundary.

(b) Define H1
0 (Ω) as a completion of C1

0(Ω) with respect to the H1-norm: H1
0 (Ω) :=

C1
0(Ω)∥·∥H1

. Show that

a(u, v) :=

∫
Ω

⟨∇u,∇v⟩

is a scalar product on H1
0 (Ω) equivalent to the standard one, i.e., there exist positive

constants c and C such that

c∥u∥H1 ≤ a(u, u)1/2 ≤ C∥u∥H1

holds for all u ∈ H1
0 (Ω).

(c) A function u ∈ H1
0 (Ω) is called a weak solution of the Poisson equation

∆u = f, u|∂Ω = 0

if a(u, φ) = ⟨f, φ⟩L2 holds for any φ ∈ C∞
0 (Ω), where f ∈ C0(Ω̄). Show that any

strong solution u ∈ C2(Ω) ∩ C0(Ω̄) of the Poisson equation is its weak solution.

(d) Show that the Poisson equation has a weak solution u ∈ H1
0 (Ω).

3One can show that C may be chosen to be independent of Ω, but the proof of this is somewhat more elaborate.
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(e) Show that the energy functional Ef : H
1
0 (Ω) → R, Ef (u) = ∥∇u∥2L2 − ⟨f, u⟩L2

is bounded from below and Ef attains its infimum. Moreover, if u is a point of
minimum of Ef and u ∈ C2(Ω) ∩ C0(Ω̄), then u is a strong solution of the Poisson
equation.

26. Let E → M be a vector bundle. Compute the symbol of an arbitrary connection ∇ on E.

27. Compute the symbol of d∗ : Ωk+1(M) → Ωk(M).

28. For a complex manifold M , compute the symbol of the Dolbeault operator ∂̄ : Ωp,q(M) →
Ωp,q+1(M).

29. Show that the operator

L : C∞(R3;H) → C∞(R3;H), Lu = i ∂xu+ j ∂yu+ k ∂zu

is elliptic, where H denotes the algebra of quaternions.

30. Is the bi-Laplacian u 7→ ∆(∆u), u ∈ C∞(Rn), an elliptic operator? Is d+d∗ : Ωk(M) →
Ωk+1(M)⊕Ωk−1(M) elliptic? Is d+d∗ : Ωeven(M) → Ωodd(M) elliptic, where Ωeven(M) :=
Ω0 ⊕ Ω2 ⊕ . . .?

31. Show that any pseudo-differential operator acting on C∞
0 (Rn), say, is an integral operator,

that is of the form
u 7→

∫
Rn

K(x, y)u(y) dy.

Compute K for the inverse of the standard Laplacian on Rn.

32. Let
Γ(E0)

L0−−→ Γ(E1)
L1−−→ Γ(E2) (2)

be a complex, where both L0 and L1 are differential operators. Show that (2) is an elliptic
complex if and only if the operator L1 + L∗

0 : Γ(E1) → Γ(E2)⊕ Γ(E0) is elliptic.

33. Show that Atiyah’s complex (1) is elliptic.

34. Prove that a bounded linear operator T : H1 → H2, where H1 and H2 are Hilbert spaces,
is Fredholm if and only if there exist bounded linear maps S1, S2 : H2 → H1 such that

S1 ◦ T = idH1 +R1 and T ◦ S2 = idH2 +R2,

where both R1 and R2 are compact.
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