List of Problems in Global Analysis

1. Let M be a closed oriented Riemannian manifold. Show that any solution $\omega \in \Omega^{k}(M)$ of the equation $\Delta \omega=d \eta$, where $\eta \in \Omega^{k-1}(M)$, is closed.
2. Prove that any cohomology class in $H_{d R}^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ is represented by a harmonic 1-form.
3. Prove that on any closed connected oriented Riemannian n-manifold, any harmonic n form is proportional to the volume form.
4. Let D be the disc in \mathbb{R}^{2} of unit radius centered at the origin. Find the dimension of the space

$$
\left\{\omega \in \Omega^{1}(D) \mid d \omega=0=d^{*} \omega, \omega\left(\partial_{n}\right)=0\right\}
$$

where ∂_{n} is the unit normal field along ∂D. Also, show that the space

$$
\left\{\omega \in \Omega^{1}(D) \mid \Delta \omega=0, \omega\left(\partial_{n}\right)=0\right\},
$$

is infinite dimensional.
5. Let M^{2} be an oriented surface equipped with a Riemannian metric g. For an everywhere positive function u, denote $g_{u}:=u^{2} g$. Show that if $\omega \in \Omega^{k}(M), k=0,1,2$, we have

$$
\Delta_{g} \omega=0 \quad \Longleftrightarrow \quad \Delta_{g_{u}} \omega=0
$$

6. Show that a k-form ω is harmonic if and only if $* \omega$ is harmonic.
7. Let M be a closed oriented Riemannian four-manifold. Since for the $*$-operator acting on $\Lambda^{2} T^{*} M$ we have $*^{2}=i d$, the bundle of 2 -forms splits into the ± 1-eigenspaces: $\Lambda^{2} T^{*} M=\Lambda_{+}^{2} T^{*} M \oplus \Lambda_{-}^{2} T^{*} M$.
(a) Show that $\operatorname{dim} \Lambda_{+}^{2} T_{m}^{*} M=\operatorname{dim} \Lambda_{-}^{2} T_{m}^{*} M$ for each $m \in M$;
(b) Show that $H_{d R}^{2}(M)$ splits as $H_{+}^{2}(M) \oplus H_{-}^{2}(M)$, where $H_{ \pm}^{2}(M)$ is the maximal positive/negative subspace of the symmetric bilinear form

$$
(\omega, \eta) \mapsto \int_{M} \omega \wedge \eta ;
$$

(c) Show that the sequence

$$
\begin{equation*}
0 \longrightarrow \Omega^{0}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d^{ \pm}} \Omega_{ \pm}^{2}(M) \rightarrow 0 \tag{1}
\end{equation*}
$$

is a complex, whose homology groups are isomorphic to

$$
H^{0}(M), \quad H^{1}(M), \quad \text { and } \quad H_{ \pm}^{2}(M) .
$$

8. Denote by $\mathcal{H}^{k}(M)$ the space of all harmonic k-forms on a closed oriented Riemannian manifold M. Assuming that $\mathcal{H}^{k}(M)$ is finite-dimensional, show that for any we have the decomposition

$$
\Omega^{k}(M)=\operatorname{Im} d \oplus \mathcal{H}^{k} \oplus \operatorname{Im} d^{*},
$$

which is in fact L^{2}-orthogonal.
9. Let Σ be a Riemann surface.
(i) Show that for any holomorphic $(1,0)$ form ζ, the real 1 -forms $\operatorname{Re} \zeta$ and $\operatorname{Im} \zeta$ are harmonic.
(ii) Show that for any real harmonic 1-form ω there exists a holomorphic $(1,0)$ form ζ such that $\operatorname{Re} \zeta=\omega$.
10. Let M and N be two closed orientable manifolds of the same dimension n. Assume, moreover, that N is connected. Pick $\omega \in \Omega^{n}(N)$ such that $\int_{N} \omega=1$ and define $\operatorname{deg} f=$ $\int_{M} f^{*} \omega$.
(i) Show that $\operatorname{deg} f$ is well-defined;
(ii) Show that $\operatorname{deg} f$ is in fact an integer;
(iii) Show that f is surjective whenever $\operatorname{deg} f \neq 0$;
(iv) Let $f: \Sigma_{1} \rightarrow \Sigma_{2}$ be a holomorphic map between compact Riemann surfaces and let $F(z)$ be a coordinate representation of f with respect to a local holomorphic coordinate z centered at some $p \in \Sigma_{1}$ (and a local holomorphic coordinate on Σ_{2}). A non-negative integer $m=m(p)$ is said to be a multiplicity of f at p if F can be represented in the form $F(z)=F(0)+z^{m} F_{1}(z)$, where $F_{1}(0) \neq 0$. Show that for any $q \in \Sigma_{2}$ we have

$$
\operatorname{deg} f=\sum_{p \in f^{-1}(q)} m(q) .
$$

(v) Let $f: \Sigma_{1} \rightarrow \Sigma_{2}$ be a holomorphic map between compact Riemann surfaces. Show that $\operatorname{deg} f \geq 0$. Moreover, $\operatorname{deg} f=0$ if and only if f is constant and $\operatorname{deg} f=1$ if and only if f is a biholomorphism.
(vi) Prove the following: If a compact Riemann surface Σ admits a meromorphic function with a unique simple pole, then Σ is biholomorphic to $\mathbb{C P}^{1}$.
11. Let Σ be a Riemann surface diffeomorphic (homeomorphic) to the torus. Prove that for any two distinct points $p_{1}, p_{2} \in \Sigma$ there exists a meromorphic function f on Σ such that both p_{1} and p_{2} are simple poles of f and f is holomorphic on $\Sigma \backslash\left\{p_{1}, p_{2}\right\}$. Also, show that the following limiting case holds: for any $p \in \Sigma$ there exists a meromorphic function g with a unique pole at p of order 2 .
12. Prove that the wedge-product of harmonic forms does not need to be harmonic (Hint: Take a compact Riemann surface Σ of genus ≥ 2. Pick a non-trivial holomorphic (1,0) form ζ. Show that $\operatorname{Re} \zeta \wedge \operatorname{Im} \zeta \neq 0$ must vanish somewhere and therefore cannot be harmonic.)
13. Prove that the tangent bundle of the 2 -sphere is non-trivial.
14. Show that there is a non-trivial bundle $E \rightarrow M$ such that $E \oplus \underline{\mathbb{R}}^{k}$ is trivial, where \mathbb{R}^{k} denotes the trivial vector bundle of rank k.
15. Let $E \rightarrow I=[0,1]$ be a vector bundle.
(a) Pick a connection ∇ on E. Show that for any $\mathrm{v} \in E_{0}$ there exists a unique section s_{v} such that $\nabla s_{\mathrm{v}}=0$ and $s_{\mathrm{v}}(0)=\mathrm{v}$.
(b) Show that any bundle $E \rightarrow I$ is trivial.
(c) Show that for any vector bundle $E \rightarrow M \times I$ we have $\left.E \cong \pi_{1}^{*} E\right|_{M \times\{0\}}=\left.E\right|_{M \times\{0\}} \times$ I, where $\pi_{1}: M \times I \rightarrow M$ is the natural projection.
(d) Let $f_{0}, f_{1}: M \rightarrow N$ be two smoothly homotopic maps. Show that $f_{0}^{*} E \cong f_{1}^{*} E$ for any vector bundle $E \rightarrow N$.
(e) Show that any vector bundle over a contractible base is trivial.
16. Denote

$$
L=\left\{([z], w) \in \mathbb{C P}^{1} \times \mathbb{C}^{2} \mid w=0 \text { or }[w]=[z]\right\}
$$

Define the projection map $\pi: L \rightarrow \mathbb{C P}^{1}$ by $([z], w) \mapsto[z]$. Show that L is a complex vector bundle of rank 1 over $\mathbb{C P}^{1} \cong S^{2}$. This is called the tautological line bundle of $\mathbb{C P}{ }^{1}$.
17. Let L be a complex line bundle bundle, that is a complex vector bundle of rank 1 , over S^{2} such that L admits a trivialization σ_{N} over $S^{2} \backslash\{N\}$ and a trivialization σ_{S} over $S^{2} \backslash\{S\}$, where $N=-S$ is the northern pole ${ }^{1}$. This yields a map $g: S^{2} \backslash\{S, N\} \rightarrow \mathbb{C}^{*}$ defined by

$$
\sigma_{S}(m)=g(m) \sigma_{N}(m) .
$$

The degree of the map $g /|g|: S^{1} \rightarrow S^{1}$, where the source $S^{1} \subset S^{2} \backslash\{S, N\}$ is thought of as the equator, is called the degree of L. Show that the following holds:
(i) The degree of a complex line bundle is well-defined and depends on the isomorphism class of L only.
(ii) The degree of the tautological bundle equals -1 .
(iii) The degree of $T^{*} S^{2}$ equals 2 . Here $T^{*} S^{2}$ is viewed as a complex line bundle as follows: The Hodge operator on $T^{*} S^{2}$ satisfies $*^{2}=-i d$. Hence, elements of $T^{*} S^{2}$ can be multiplied by complex numbers: $(a+b i) \cdot \omega:=a \omega+b * \omega$.
(iv) $\operatorname{deg}\left(L_{1} \otimes L_{2}\right)=\operatorname{deg} L_{1}+\operatorname{deg} L_{2}$.
(v) $\operatorname{deg} L^{*}=-\operatorname{deg} L$, where $L^{*}=\operatorname{Hom}(L, \mathbb{C})$ is the dual line bundle.
(vi) For any integer n there exists a complex line bundle L_{n} such that $\operatorname{deg} L_{n}=n$.
(vii) Two line bundles are isomorphic if and only if their degrees are equal.
(viii) Prove that the tangent bundle of S^{2} is non-trivial.
18. (a) Let $E \rightarrow M$ be a vector bundle and $F \rightarrow M$ be a subbundle of E. Show that there is a subbundle $G \subset E$ such that $E=F \oplus G$. In other words, any short exact sequence of vector bundles $0 \rightarrow F \rightarrow E \rightarrow G \rightarrow 0$ splits.
(b) Prove that for any vector bundle E over a compact ${ }^{2}$ base M there exists a vector bundle F such that $E \oplus F$ is trivial.
(c) Denote by $\operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ the Grassmannian of all k-dimensional subspaces in \mathbb{R}^{n}. Let

$$
E_{k, n}:=\left\{(x, V) \in \mathbb{R}^{n} \times \operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right) \mid x \in V\right\}
$$

be the tautological bundle over $\mathrm{Gr}_{k}\left(\mathbb{R}^{n}\right)$, cf. Problem 16. Show that for any rank k vector bundle E over a compact manifold M there exists a (smooth) map $f: M \rightarrow$ $\operatorname{Gr}_{k}\left(\mathbb{R}^{n}\right)$ such that $E \cong f^{*} E_{k, n}$.

[^0]19. Show that any function $f \in H^{1}(0,1)$ is continuous without using the Sobolev embedding theorem.
20. Show that the function
(i) $f(x)=|x|$ belongs to $H^{1}(-1,1)$;
(ii) $f(x)=|x|^{1 / 2}$ does not belong to $H^{1}(-1,1)$.
21. For which values of $a \in \mathbb{R}$ does the function $f(x)=|x|^{a}$ belong to $H^{k}\left(\mathbb{R}^{n}\right)$?
22. Show that there exists a function $f \in H^{1}\left(\mathbb{R}^{2}\right)$, which is not continuous.
23. (a) Prove the following simple version of the Sobolev embedding theorem: Show that $H^{1}(0,1)$ embeds into the Hölder space $C^{0,1 / 2}(0,1)$.
(b) Prove that the embedding $H^{1}(0,1) \rightarrow C^{0}(0,1)$ is compact.
24. Let $q: H \times H \rightarrow \mathbb{R}$ be a symmetric bilinear form on a Hilbert space H with the following property: for any $u \in H$ there is some constant $C(u)>0$ such that $|q(u, v)| \leq C(u)\|v\|$ for all $v \in H$. Show that there exists a symmetric bounded linear operator $Q: H \rightarrow H$ such that $\langle Q u, v\rangle=q(u, v)$.
25. (a) Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain (with a smooth boundary). Prove that the Poincaré inequality
$$
\|u\|_{L^{2}(\Omega)} \leq C\|\nabla u\|_{L^{2}(\Omega)}
$$
holds for any $u \in C_{0}^{1}(\Omega):=\left\{u \in C^{1}\left(\mathbb{R}^{n}\right) \mid \operatorname{supp} u \subset \Omega\right\}$. Here the constant C may depend ${ }^{3}$ on Ω, but not on u.
Remark: One can show that for any $u \in H^{1}(\Omega)$ the trace $\left.u\right|_{\partial \Omega}$ is well defined as an L^{2}-function, for example. With this at hand, one can define $H_{0}^{1}(\Omega)$ as a subspace of H^{1}-functions with vanishing trace on the boundary.
(b) $\frac{\text { Define }}{C_{0}^{1}(\Omega)} H_{0}^{1}(\Omega)$ as a completion of $C_{0}^{1}(\Omega)$ with respect to the H^{1}-norm: $H_{0}^{1}(\Omega):=$ ${\overline{C_{0}^{1}}(\Omega)}_{\|\cdot\|_{H^{1}}}$. Show that
$$
a(u, v):=\int_{\Omega}\langle\nabla u, \nabla v\rangle
$$
is a scalar product on $H_{0}^{1}(\Omega)$ equivalent to the standard one, i.e., there exist positive constants c and C such that
$$
c\|u\|_{H^{1}} \leq a(u, u)^{1 / 2} \leq C\|u\|_{H^{1}}
$$
holds for all $u \in H_{0}^{1}(\Omega)$.
(c) A function $u \in H_{0}^{1}(\Omega)$ is called a weak solution of the Poisson equation
$$
\Delta u=f,\left.\quad u\right|_{\partial \Omega}=0
$$
if $a(u, \varphi)=\langle f, \varphi\rangle_{L^{2}}$ holds for any $\varphi \in C_{0}^{\infty}(\Omega)$, where $f \in C^{0}(\bar{\Omega})$. Show that any strong solution $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ of the Poisson equation is its weak solution.
(d) Show that the Poisson equation has a weak solution $u \in H_{0}^{1}(\Omega)$.

[^1](e) Show that the energy functional $E_{f}: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}, E_{f}(u)=\|\nabla u\|_{L^{2}}^{2}-\langle f, u\rangle_{L^{2}}$ is bounded from below and E_{f} attains its infimum. Moreover, if u is a point of minimum of E_{f} and $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$, then u is a strong solution of the Poisson equation.
26. Let $E \rightarrow M$ be a vector bundle. Compute the symbol of an arbitrary connection ∇ on E.
27. Compute the symbol of $d^{*}: \Omega^{k+1}(M) \rightarrow \Omega^{k}(M)$.
28. For a complex manifold M, compute the symbol of the Dolbeault operator $\bar{\partial}: \Omega^{p, q}(M) \rightarrow$ $\Omega^{p, q+1}(M)$.
29. Show that the operator
$$
L: C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{H}\right) \rightarrow C^{\infty}\left(\mathbb{R}^{3} ; \mathbb{H}\right), \quad L u=i \partial_{x} u+j \partial_{y} u+k \partial_{z} u
$$
is elliptic, where \mathbb{H} denotes the algebra of quaternions.
30. Is the bi-Laplacian $u \mapsto \Delta(\Delta u), u \in C^{\infty}\left(\mathbb{R}^{n}\right)$, an elliptic operator? Is $d+d^{*}: \Omega^{k}(M) \rightarrow$ $\Omega^{k+1}(M) \oplus \Omega^{k-1}(M)$ elliptic? Is $d+d^{*}: \Omega^{\text {even }}(M) \rightarrow \Omega^{\text {odd }}(M)$ elliptic, where $\Omega^{\text {even }}(M):=$ $\Omega^{0} \oplus \Omega^{2} \oplus \ldots ?$
31. Show that any pseudo-differential operator acting on $C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, say, is an integral operator, that is of the form
$$
u \mapsto \int_{\mathbb{R}^{n}} K(x, y) u(y) d y
$$

Compute K for the inverse of the standard Laplacian on \mathbb{R}^{n}.
32. Let

$$
\begin{equation*}
\Gamma\left(E_{0}\right) \xrightarrow{L_{0}} \Gamma\left(E_{1}\right) \xrightarrow{L_{1}} \Gamma\left(E_{2}\right) \tag{2}
\end{equation*}
$$

be a complex, where both L_{0} and L_{1} are differential operators. Show that (2) is an elliptic complex if and only if the operator $L_{1}+L_{0}^{*}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(E_{2}\right) \oplus \Gamma\left(E_{0}\right)$ is elliptic.
33. Show that Atiyah's complex (1) is elliptic.
34. Prove that a bounded linear operator $T: H_{1} \rightarrow H_{2}$, where H_{1} and H_{2} are Hilbert spaces, is Fredholm if and only if there exist bounded linear maps $S_{1}, S_{2}: H_{2} \rightarrow H_{1}$ such that

$$
S_{1} \circ T=\operatorname{id}_{H_{1}}+R_{1} \quad \text { and } \quad T \circ S_{2}=\operatorname{id}_{H_{2}}+R_{2},
$$

where both R_{1} and R_{2} are compact.

[^0]: ${ }^{1}$ In fact any vector bundle has this property by Problem 15 (e).
 ${ }^{2}$ This is true for any manifold, however, a solution is slightly simpler if one assumes the base to be compact.

[^1]: ${ }^{3}$ One can show that C may be chosen to be independent of Ω, but the proof of this is somewhat more elaborate.

