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This is lecture notes for a course given at the PCMI Summer School “Quantum Field The-
ory and Manifold Invariants” (July 1 – July 5, 2019). I describe basics of gauge-theoretic
approach to construction of invariants of manifolds. The main example considered here is
the Seiberg–Witten gauge theory. However, I tried to present the material in a form, which
is suitable for other gauge-theoretic invariants too.
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1 Introduction
Gauge theory by now is a vast subject with many connections in geometry, analysis, and physics.
In these notes I focus on gauge theory as it is used in the construction of manifolds invariants, other
uses of gauge theory remain beyond the scope of these notes.

The basic scheme of construction invariants of manifolds via gauge theory is quite simple. To
be more concrete, let me describe some details. Thus, let G be a Lie group acting on a manifold
C. The common convention, which I will follow, is that G acts on the right, although this is clearly
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nonessential. The quotient B := C/G may fail to be a nice space1 in a few ways, for example due
to the presence of points with nontrivial stabilizers. Denote by Cirr ⊂ C the subspace consisting of
all points with the trivial stabilizer. Then G acts on Cirr and the quotient Birr := Cirr/G is better
behaved. Let me assume that Birr is in fact a manifold.

Pick a G–representation V and a smooth G–equivariant map F : C → V , where the equivariancy
means the following:

F (a · g) = g−1 · F (a).

Here V is thought of as a left G–module.
More to the point, assuming that 0 ∈ V is a regular value of F , we obtain a submanifold

Mirr := F−1(0) ∩ Cirr/G ⊂ Birr. Furthermore, assume also d := dimMirr < ∞. Mirr will be
referred to as the ‘moduli space’, although the terminology may seem odd at this moment. IfMirr

is compact and oriented, it has the fundamental class [Mirr] ∈ Hd(Birr; Z). In particular, for any
cohomology class η ∈ Hd(Birr; Z) we obtain an integer

〈
[Mirr], η

〉
=

∫
Mirr

η,

where η is thought of as a closed form of degree d on Birr. This is the ‘invariant’ we are interested
in.

One way to construct cohomology classes on Birr is as follows. Assume there is a nor-
mal subgroup G0 ⊂ G so that G := G/G0 is a Lie group. Then the ‘framed moduli space’
M̂irr := F−1(0) ∩ Cirr/G0 is equipped with an action of G/G0 = G such that M̂irr/G = Mirr.
In other words, M̂irr can be viewed as a principal G bundle, whose characteristic classes yield the
cohomology classes we are after. More details on this is provided in Section 3.

While this scheme is clearly very general, the details in each particular case may differ to some
extend. The aim of these notes is to explain this basic scheme in some details rather than variations
enforced by a concrete setup. As an illustration I consider the Seiberg–Witten theory in dimension
four, where this scheme works particularly well. Due to the tight timeframe of the lectures this
remains essentially the only example of a gauge–theoretic problem considered in these notes.

At present a number of monographs in gauge theory is available, for example [Mor96, Moo96,
DK90, FU91, Don02, KM07] just to name a few. All of them are however pretty much specialized
to a concrete setting or problem while many features are common to virtually any theory, which
is based on counting solutions of non-linear elliptic PDEs, even not necesserily of gauge–theoretic
origin. While the presentation here does not differ substantially from the treatment of [Mor96,
DK90], I tried to keep separate general principles from peculiar features of concrete problems.
Also, I hopefully streamlined somewhat some arguments, for example the proof of the compactness
for the Seiberg–Witten moduli space. Although I did not cover any other examples of gauge–
theoretic invariants except the Seiberg–Witten invariant, the reader will be hopefully well prepared
to read advanced texts on other enumerative invariants such as [DK90] on his own.

The reader may ask why should we actually care about gauge theories beyond the Seiberg–
Witten one, since most of the results obtained by gauge–theoretic means can be reproduced with
the help of the Seiberg–Witten gauge theory. One answer is that the Seiberg–Witten theory does not
generalize to higher dimensions, whereas for example the anti–self–duality equations do generalize

1Ideally, one wishes the quotient to be a smooth manifold.
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and are currently a topic of intense research. Even in low dimensions physics suggests that gauge
theories based on non-abelian groups such as SL(2,C) or more traditional SU(2) may provide
insights that the Seiberg–Witten theory is not capable of. For example, the Kapustin–Witten equa-
tions play a central rôle in Witten’s approach to the construction of the Jones polynomial.

These notes are organized as follows. In introductory Sections 2 – 4 I describe those properties
of the ‘points’ in C that are important for the intended applications. Sections 5 and 6 are devoted
to analytic tools used in the studies of gauge–theoretic moduli spaces. This can be viewed as
studies of properties of F from a (somewhat) abstract point of view. The concepts and theorems
considered in this part are not really specific to gauge theory, the same toolbox is used in virtually
any enumerative problem based on elliptic PDEs. The last section is devoted to the Seiberg–Witten
theory.

I tried to keep these notes self-contained where this did not require long and technical detours. I
hope this will make the notes available to early graduate students. Part of such course is necessarily
certain tools from PDEs. I tried to state clearly the facts that play a rôle in the main part of these
notes, however I did not intend to give a detailed description or complete proofs of those. The
reader may wish to consult a more specialized literature on this topic, for example relevant chapters
of [Eva10, Wel80].

2 Bundles and connections

2.1 Vector bundles
2.1.1 Basic notions

Roughly speaking, a vector bundle is just a family of vector spaces parametrized by points of a
manifold (or, more generally, of a topological space).

More formally, the notion of a vector bundle is defined as follows.

Definition 1. Choose a non-negative integer k. A real smooth vector bundle of rank k is a triple
(π,E,M) such that the following holds:

(i) E and M are smooth manifolds, π : E → M is a smooth submersion (the differential is
surjective at each point);

(ii) For each m ∈M the fiber Em := π−1(m) has the structure of a vector space and Em ∼= Rk;

(iii) For each m ∈ M there is a neighborhood U 3 m and a smooth map ψU such that the
following diagram

π−1(U) U × Rk

U

π

ψU

pr1

commutes. Moreover, ψU is a fiberwise linear isomorphism.
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The following terminology is commonly used: E is the total space, M is the base, π is the
projection, and ψU is the local trivialization (over U ).

Example 1.

(a) The product bundle: M × Rk;

(b) The tangent bundle TM of any smooth manifold M .

Let E and F be two vector bundles over a common base M . A homomorphism between E and
F is a smooth map ϕ : E → F such that the diagram

E F

M

πE

ϕ

πF

commutes and ϕ is a fiberwise linear map.
Two bundles E and F are said to be isomorphic, if there is a homomorphism ϕ, which is

fiberwise an isomorphism.
A bundle E is said to be trivial, if E is isomorphic to the product bundle.

2.1.2 Operations on vector bundles

Let E and F be two vector bundles over a common base M . Then we can construct new bundles
E∗, ΛpE, E ⊕ F, E ⊗ F, and Hom(E, F ) as follows:

(∗) (E∗)m = (Em)∗;

(Λ) (ΛpE)m = Λp(Em);

(⊕) (E ⊕ F )m := Em ⊕ Fm;

(⊗) (E ⊗ F )m := Em ⊗ Fm;

(Hom) Hom(E, F )m := Hom(Em, Fm).

If f : M ′ →M is a smooth map, we can define the pull-back of E →M via

(f ∗E)m′ := Ef(m′).

For example, if M ′ is an open subset of M and ι is the inclusion, then E|M ′ := ι∗E is just the
restriction of E to M ′.

The reader should check that the families of vector spaces defined above satisfy the properties
required by Definition 1.

Exercise 2. Prove that E∗ ⊗ F is isomorphic to Hom(E,F ).

Exercise 3. Prove that the tangent bundle of the 2-sphere is non-trivial. (Hint: Apply the hairy ball
theorem).
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2.1.3 Sections

Definition 4. A smooth map s : M → E is called a section, if π ◦ s = idM .

In other words, a section assigns to each point m ∈ M a vector s(m) ∈ Em such that s(m)
depends smoothly on m.

Sections of the tangent bundle TM are called vector fields. Sections of ΛpT ∗M are called
differential p-forms.

Example 2. If f is a smooth function on M , then the differential df is a 1-form on M . More
generally, given functions f1, . . . , fp we can also construct a p-form ω := df1 ∧ · · · ∧ dfp.
Exercise 5. Let E → M be a vector bundle of rank k and U ⊂ M be an open subset. Prove that
E is trivial over U if and only if there are k sections e = (e1, . . . , ek), ej ∈ Γ(U ; E), such that
e(m) is a basis of Em for each m ∈ U . More precisely, given e show that ψU can be constructed
according to the formula

ψ−1
U : U × Rk −→ E|U , (m,x) 7→ e(m) · x.

In fact this establishes a one-to-one correspondence between k-tuples of pointwise linearly inde-
pendent sections and local trivializations of E.

We denote by Γ(E) = Γ(M ; E) the space of all smooth sections ofE. Clearly, Γ(E) is a vector
space, where the addition and multiplication with a scalar are defined pointwise. In fact, Γ(E) is a
C∞(M)-module.

Given a local trivialization e over U (cf. Exercise 5) and a section s, we can write

s(m) =
k∑
j=1

σj(m)ej(m)

for some functions σj : U → R. Thus, locally any section of a vector bundle can be thought of as a
map σ : U → Rk.

It is important to notice that σ depends on the choice of a local trivialization. Indeed, if e′ is
another local trivialization of E over U ′, then there is a map

g : U ∩ U ′ −→ GLn(R) such that e = e′ · g. (6)

If σ′ : U ′ → Rk is a local representation of s with respect to e′, we have

s = e′σ′ = eg−1σ′ = eσ =⇒ σ′ = gσ.

2.1.4 Covariant derivatives

The reader surely knows from the basic analysis course that the notion of the derivative is very
useful. It is natural to ask whether there is a way to differentiate sections of bundles too.

To answer this question, recall the definition of the derivative of a function f : M → R. Namely,
choose a smooth curve γ : (−ε, ε)→M and denote m := γ(0), v := γ̇(0) ∈ TmM . Then

df(v) = lim
t→0

f(γ(t))− f(m)

t
. (7)
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Trying to replace f by a section s of a vector bundle, we immediately run into a problem, namely
the difference s(γ(t)) − s(m) is ill-defined in general since these two vectors may lie in different
vector spaces.

Hence, instead of trying to mimic (7) we will define the derivatives of sections axiomatically,
namely asking that the most basic property of the derivative—the Leibnitz rule—holds.

Definition 8. LetE →M be a vector bundle. A covariant derivative is an R-linear map∇ : Γ(E)→
Γ(T ∗M ⊗ E) such that

∇(fs) = df ⊗ s+ f∇s (9)

holds for all f ∈ C∞(M) and all s ∈ Γ(E).

Example 10. LetM ⊂ RN be an embedded submanifold. Then the tangent bundle TM is naturally
a subbundle of the product bundle RN := M × RN . In particular, any section s of TM can be
regarded as a map M → RN . With this at hand we can define a connection on TM as follows

∇s := pr(ds),

where pr is the orthogonal projection onto TM . A straightforward computation shows that this
satisfies the Leibniz rule, i.e.,∇ is a connection indeed.

Theorem 11. For any vector bundle E →M the space of all connections A(E) is an affine space
modelled on Ω1(EndE) = Γ

(
T ∗M ⊗ End(E)

)
.

To be somewhat more concrete, the above theorem consists of the following statements:

(a) A(E) is non-empty.
(b) For any two connections∇ and ∇̂ the difference∇− ∇̂ is a 1-form with values in End(E);
(c) For any∇ ∈ A(E) and any a ∈ Ω1(EndE) the following

(∇+ a)s := ∇s+ as

is a connection.

For the proof of Theorem 11 we need the following elementary lemma, whose proof is left as
an exercise.

Lemma 12. Let A : Γ(E)→ Ωp(F ) be an R-linear map, which is also C∞(M)-linear, i.e.,

A(fs) = fA(s) ∀f ∈ C∞(M) and ∀s ∈ Γ(E).

Then there exists a ∈ Ωp
(
Hom(E,F )

)
such that A(s) = a · s. �

Proof of Theorem 11. Notice first thatA(E) is convex, i.e., for any∇, ∇̂ ∈ A(E) and any t ∈ [0, 1]
the following t∇+ (1− t)∇̂ is also a connection.

If ψU is a local trivialization of E over U , then we can define a connection ∇U on E|U by
declaring

∇Us := ψ−1
U d(ψU(s)).

Using a partition of unity and the convexity property, a collection of these local covariant derivatives
can be sewed into a global covariant derivative just like in the proof of the existence of Riemannian
metrics on manifolds, cf. [BT03, Thm. 3.3.7]. This proves (a).

By (9), the difference∇− ∇̂ is C∞(M)–linear. Hence, (b) follows by Lemma 12.

The remaining step, namely (c), is straightforward. This finishes the proof of this theorem. �
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While Theorem 11 answers the question of the existence of connections, the reader may wish
to have a more direct way to put his hands on a connection. One way to do this is as follows.

Let e be a local trivialization. Since e is a pointwise base we can write

∇e = e · A, (13)

where A = A(∇, e) is a k × k-matrix, whose entries are 1-forms defined on U . A is called the
connection matrix of∇ with respect to e.

If σ is a local representation of a section s, then

∇s = ∇(eσ) = ∇(e)σ + e⊗ dσ = e
(
Aσ + dσ

)
.

Hence, it is common to say that locally

∇ = d+ A,

which means that dσ +Aσ is a local representation of∇s. In particular,∇ is uniquely determined
by its connection matrix over U and any A ∈ Ω1(U ; glk(R)) appears as a connection matrix of
some connection (cf. Theorem 11).

Just like σ, the connection matrix also depends on the choice of e. If e′ = eg, we have

∇e′ = ∇(eg) = (∇e)g + e⊗ dg = e
(
Ag + dg

)
= e′

(
g−1Ag + g−1dg

)
.

Hence, the connection matrix A′ of∇ with respect to e′ can be expressed as follows:

A′ = g−1Ag + g−1dg. (14)

2.1.5 The curvature

While Definition 8 yields a way to differentiate sections, some properties very well known from
multivariable analysis are not preserved. One of the most important cases is that covariant deriv-
atives with respect to two variables do not need to commute. The failure of the commutativity of
partial covariant derivatives is closely related to the notion of curvature, which is described next.

Denote Ωp(E) := Γ
(
ΛpT ∗M ⊗ E

)
. We can extend the covariant derivative ∇ to a map

d∇ : Ωp(E)→ Ωp+1(E) as follows. If s ∈ Γ(E) and ω ∈ Ωp(M) we declare

d∇(ω ⊗ s) := dω ⊗ s+ (−1)pω ∧∇s,

which yields a unique R-linear map d∇ defined on all of Ωp(E). This satisfies the following variant
of the Leibniz rule

d∇(α ∧ ω) = dα ∧ ω + (−1)qα ∧ d∇ω, for all α ∈ Ωq(M) and ω ∈ Ωp(M ; E).

Thus, we obtain a sequence

0→ Ω0(E)
d∇=∇−−−−→ Ω1(E)

d∇−−→ · · · → Ωn(E)→ 0,

where n = dimM . However, unlike in the case of the de Rham differential, the above does not
need to be a complex.
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Proposition 15. There is a 2-form F∇ with values in EndE such that

d∇ ◦ d∇ = F∇. (16)

The above equality means that for any ω ∈ Ωp(E) we have d∇
(
d∇(ω)

)
= F∇ ∧ ω, where

the right hand side of the letter equality is a combination of the wedge-product and the natural
contraction End(E)⊗ E → E.

Proof of Proposition 15. We prove the proposition for p = 0 first. Applying the Leibniz rule twice,
we see that d∇ ◦∇ : Ω0(E)→ Ω2(E) is C∞(M)–linear. Hence, by Lemma 12 we obtain a 2-form
F∇ such that

d∇(∇s) = F∇s

holds for any s ∈ Ω0(E).
It remains to consider the case p > 0. For any η ∈ Ωp(M) and s ∈ Γ(E) we have

d∇
(
d∇(η ⊗ s)

)
= d∇

(
dη ⊗ s+ (−1)pη ∧∇s

)
= 0 + (−1)p+1dη ∧∇s+ (−1)pdη ∧∇s+ (−1)2pη ∧ d∇

(
∇s
)

= η ∧ F∇s
= F∇ ∧ (η ⊗ s).

Here the last equality holds because F∇ is a differential form of even degree. �

Definition 17. The 2-form F∇ defined by (16) is called the curvature form of∇.

Our next aim is to clarify somewhat the meaning of the curvature form. If v is a tangent vector
at some point m ∈M , we call

∇v s := ıv∇s
the covariant derivative of s in the direction of v.

Choose local coordinates (x1, . . . , xn) and denote by ∂i = ∂
∂xi

the tangent vector of the curve

γ(t) = (x0
1, . . . , x

0
i−1, t, x

0
i+1, . . . , x

0
n).

We may call
∇i s := ∇∂i s

“partial covariant derivatives”. With these notations at hand we have the expression

∇s =
n∑
i=1

dxi ⊗∇i s,

which is just a form of the familiar expression for the differential of a function: df =
∑ ∂f

∂xi
dxi.

Furthermore, we have

d∇(∇s) = −
n∑
i=1

dxi ∧∇
(
∇i s

)
= −

n∑
i,j=1

dxi ∧ dxj ⊗∇j(∇is)

=
n∑

i,j=1

dxi ∧ dxj ⊗∇i(∇js).
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From this we conclude
F∇
(
∂i, ∂j

)
= ∇i(∇js)−∇j(∇is),

i.e., the curvature form measures the failure of partial covariant derivatives to commute as men-
tioned at the beginning of this section.

Sometimes it is useful to have an expression of the curvature form in a local frame. Thus,
pick a local frame e of E and let A be the connection form of ∇ with respect to e. If σ is a local
representation of some s ∈ Γ(E), then we have

d∇
(
∇(eσ)

)
= d∇

(
e(dσ + Aσ)

)
= ∇e ∧ (dσ + Aσ) + e(dAσ − A ∧ dσ)

= e
(
A ∧ dσ + A ∧ Aσ + dAσ − A ∧ dσ

)
= e
(
dA+ A ∧ A

)
σ.

Hence, we conclude that locally
F∇ = dA+ A ∧ A. (18)

In particular, the curvature form is a first order non-linear operator in terms of the connection form.
Remark 19. It turns out to be useful to think of A as a 1–form with values in the Lie algebra
glk(R) = End(Rk). From this perspective it is more suitable to write (18) in the following form

F∇ = dA+
1

2
[A ∧ A], (20)

where the last term is a combination of the wedge product and the Lie brackets.
If e′ is another local frame such that e = e′ · g, then using (14) one can show that

F ′∇ = dA′ + A′ ∧ A′ = g−1F∇ g.

The reader is strongly encouraged to check the details of this computation.
Local expression (18) implies immediately the following.

Proposition 21. If a ∈ Ω1(EndE), then the curvature forms of ∇ and ∇ + a are related by the
equality:

F∇+a = F∇ + d∇a+ a ∧ a. �

2.1.6 The gauge group

Pick a vector bundle E and consider

G = G(E) :=
{
g ∈ Γ

(
End(E)

)
| ∀m ∈M g(m) ∈ GL(Em)

}
,

which is endowed with the C∞–topology. If E is endowed with an extra structure, for example an
orientation or a scalar product, we also require that gauge transformations respect this structure.

Clearly, G is a topological group, where the group operations are defined pointwise. G is called
the group of gauge transformations of E or simply the gauge group.

If ∇ is a connection on E and g ∈ G, we can define another connection as follows

∇gs := g−1∇(gs).

This yields a right action of G on A(E).

10
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Definition 22. Two connections are called gauge equivalent, if there is a gauge transformation that
transforms one of the connections into the other one.

Pick a local trivialization e of E over an open subset U . Let A = A(e,∇) ∈ Ω1(U ; glk(R)) be
a local representation of∇, i.e.,∇e = e ·A. Let us compute the local representation of∇g. Notice
first, that using e we may think of g as a map U → GLk(R), i.e., g(e) = e · g. Then

∇ge = g−1
(
∇(e · g)

)
= g−1

(
e · Ag + e · dg

)
= g−1(e) · (Ag + dg) = e ·

(
g−1Ag + g−1dg

)
.

We conclude
A(∇g, e) = g−1Ag + g−1dg = A(∇, e · g),

where the last equality follows by (14). Thus, (14) expresses both the change of the connection
matrix under the change of local trivializations and the action of the gauge group.

2.2 Principal bundles
The computations we met in the previous sections on the dependence of our objects on the choice
of a local frame become formidable quite soon. The notion of a principal bundle is useful in dealing
with this and turns out to have other advantages as we will see below. The idea is to consider all
possible frames at once rather than choosing local trivializations when needed.

2.2.1 The frame bundle and the structure group

Let G be a Lie group.

Definition 23. A principal bundle with the structure group G is a triple (P,M, π), where

(i) P and M are smooth manifolds and π : P →M is a surjective submersion;
(ii) G acts on P on the right such that π(p · g) = π(p) for all p ∈ P and all g ∈ G;

(iii) G acts freely and transitively on each fiber π−1(m);
(iv) For each m ∈M there is a neighborhood U 3 m and a map ψU such that the diagram

π−1(U) U ×G

U

π

ψU

pr1

commutes. Moreover, ψU is G–equivariant ψU(p · g) = ψU(p) · g, where G acts on U × G
by the multiplication on the right on the second factor.

A fundamental example of a principal bundle is the frame bundle of a vector bundle E → M .
We take a moment to describe the construction in some detail.

Thus, for a fixed m ∈M let Fr(Em) denote the set of all bases of Em. The group GLk(R) acts
freely and transitively on Fr(Em) so that we can in fact identify Fr(Em) with GLk(R) even though
in a non-canonical way. In any case, Fr(Em) can be viewed as an open subset of Rk2 .

11
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Consider
Fr(E) :=

⊔
m∈M

Fr(Em).

Clearly, there is a well-defined projection π : Fr(E) → M determined uniquely by the property:
π(p) = m if and only if p ∈ Fr(Em).

We introduce a smooth structure on Fr(E) as follows. Pick a chart U on M . By shrinking U if
necessary we can assume that there is a local frame e ofE defined on U . Then we have the bijective
map

ΨU : U ×GLk(R) −→ π−1(U), (m,h) 7→ e(m) · h. (24)

Using this we can think of π−1(U) as an open subset of an Euclidean space so that we can declare
π−1(U) to be a chart on Fr(E) with an obvious choice of coordinates.

Let U ′ be another chart onM such that there is a local frame e′ defined on U ′. A straightforward
computation yields

Ψ−1
U ′
◦ΨU(m,h) =

(
m, g(m)h

)
,

where g is defined by (6). This implies that the transition maps between π−1(U) and π−1(U ′) are
smooth, i.e., we have constructed a smooth atlas on Fr(U). The rest of the properties required in
the definition of the principal bundle are clear from the construction.

Exercise 25. Show that local triviality of a principal bundle, i.e., Property (iv) of Definition 23, is
equivalent to the existence of local sections. More precisely, if P admits a trivialization over U ,
then there is a section of P |U and conversely, if P |U admits a section, then P |U is also trivializable
over U . In particular, show that the frame bundle of TS2 does not admit any global sections.

Often vector bundles come equipped with an extra structure, for example orientations of each
fiber and/or scalar product on each fiber. In the language of principal bundles this corresponds to
the notion of a G-structure.

Definition 26. Let G be a Lie subgroup of GLk(R). A G-structure on E is a G–subbundle P of
the frame bundle. In this case G is called the structure group of E.

To illustrate this notion, let us consider the following example. Assume E is an Euclidean
vector bundle, which means that each fiber Em is equipped with an Eucliden scalar product 〈·, ·〉m,
which depends smoothly on m. Here the dependence is said to be smooth if for any two smooth
sections s1 and s2 the function 〈s1, s2〉 is also smooth.

It is natural to consider the subset

O(E) :=
{
e ∈ Fr(E) | e is orthonormal

}
.

The restriction of π yields a surjective map O(E) → M , which is still denoted by π. If e is any
local frame of E over an open subset U , the Gram-Schmidt orthogonalization process shows that
there is also a smooth pointwise orthonormal frame eO defined on U . Just like in the case of Fr(E)
we can cover O(E) by open subsets π−1(U) such that

ΨU : U ×O(k)→ π−1(U), (m,h) 7→ eO(m) · h

is a bijection. While O(k) is not an open subset of an Euclidean space, it is a manifold, and
therefore we can cover O(k)—hence, also π−1(U)—by a collection of charts. The same argument

12
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as in the case of the frame bundle shows that the transition functions are smooth so that O(E) is a
principal O(k)–bundle.

We see that an Euclidean structure on E determines an O(k)–structure on E. Conversely, an
O(k)-structure P ⊂ Fr(E) determines an Euclidean structure on E. Indeed, pick any p ∈ Pm and
any two vectors v1, v2 ∈ Em. Since p is a basis of Em, we can write vi = p · xi, where xi ∈ Rk.
We define a scalar product on Em by

〈v1, v2〉 = xt1x2.

It is straightforward to check that this does not depend on the choice of p. Moreover, the scalar
product defined in this way depends smoothly on m.

To summarize, an Euclidean structure on a vector bundle is equivalent to an O(k)–structure.

Exercise 27. A fiberweise volume form is by definition a nowhere vanishing section of ΛkE∗,
where k = rkE. Show that there is a one-to-one correspondence between fiberwise volume forms
and SLk(R)–structures.

Let V be a complex vector space of complex dimension k. One can view V as a real vector
space of dimension 2k equipped with an endomorphism I ∈ EndR(V ), Iv = iv so that I2 = −id.
Conversely, given a real vector space equipped with an endomorphism I ∈ EndR(V ) such that
I2 = −id we can regard V as a complex vector space, where i · v := Iv. In this case dimR V is
necessarily even. The map I is called a complex structure.

With the above understood, a complex vector bundle is just a real vector bundle equipped with
I ∈ Γ

(
EndE

)
such that I2 = −id. In particular, each fiber Em is endowed with a complex

structure I(m). Thus, a complex vecor bundle is essentially a family of complex vector spaces
parametrized by points of the base.

Exercise 28.

(i) Show that a complex vector bundle can be defined as a locally trivial family of complex
vector spaces akin to Definition 1;

(ii) Show that there is a one-to-one correspondence between complex structures on a real vector
bundle E or rank 2k and GLk(C)–structures. Here GLk(C) is viewed as a subgroup of
GL2k(R)

GLk(C) =
{
A ∈ GL2k(R) | A ◦ Ist = Ist ◦ A },

where Ist is the standard complex structure on R2k:

Ist(x1, y1, . . . , xk, yk) := (−y1, x1, . . . ,−yk, xk).

Exercise 29. A Hermitian structure on a complex vector bundle is a smooth family of Hermitian
scalar products on each fiber. Prove that the following holds:

(i) Any complex vector bundle admits a Hermitian structure;

(ii) There is a one-to-one correspondence between Hermitian structures and U(k)–structures.

13
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2.2.2 The associated vector bundle

Let π : P → M be a principal G–bundle. For any representation ρ : G → GL(V ), where V is a
vector space, we can construct a vector bundle over M as follows.

Define the right G–action on the product bundle P × V via

(p, v) · g =
(
p · g, ρ(g−1)v

)
.

Clearly, this action is free and properly discontinuous so that the quotient

P ×ρ V :=
(
P × V

)
/G (30)

is a smooth manifold. The map π yields a well-defined projection

P ×ρ V →M, [p, v] 7→ π(p)

which we still denote by the same letter π. Its fibers are isomorphic to V , hence these have a
canonical structure of vector spaces. Moreover, given a local section s ∈ Γ(U ; P ) we can construct
a local trivialization of E via the map

ψ−1
U : U × V → π−1

E (U), (m, v) 7→ [s(m), v].

Hence, if P is locally trivial, so is E.

Definition 31. The vector bundle E = E(P, ρ, V ) defined by (30) is called the vector bundle
associated with (P, ρ), or simply the associated bundle.

Example 32. Let P = Fr(E), V = Rk, and ρ = id be the tautological representation of GLk(R).
Then the map

Fr(E)× Rk −→ E, (e, x) 7→
n∑
i=1

xiei

induces an isomorphism E
(
Fr(E), id

) ∼= E.

This example shows that the construction of an associated bundle allows one to recover a vector
bundle from its frame bundle. However, by varying the representation ρwe can obtain other bundles
as well. The following example illustrates this.

Example 33. Consider P = Fr(E) again, however this time we take V = Λp(Rk)∗ and ρ the
natural representation of GLk(R) on Λp(Rk)∗, i.e.,

ρ : GLk(R)× Λp(Rk)∗ → Λp(Rk)∗, (g, α) 7→ α
(
g−1· , . . . , g−1·

)
. (34)

We have the map

Fr(E)× Λp(Rk)∗ → ΛpE∗, (e, α) 7→ α
(
e−1· , . . . , e−1· )

where we think of a frame e as an isomorphism Rk → Eπ(e). This induces an isomorphism of
vector bundles

Fr(E)×ρ Λp(Rk)∗ ∼= ΛpE∗.

Thus, ΛpE∗ can be recovered as the vector bundle associated with (Fr(E), ρ), where ρ is given
by (34).

14
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Exercise 35. Let V be the space of k × k-matrices Mk(R) ∼= End(Rk) viewed as a GLk(R)–
representation as follows:

ρ : (g, A) 7→ gAg−1.

Show that Fr(E)×ρ End(Rk) is isomorphic to End(E).

Denote

C∞(P ; V )G :=
{
ŝ : P → V | s(p · g) = ρ(g−1)ŝ(p) ∀p ∈ P and g ∈ G

}
.‘

Pick any ŝ ∈ C∞(P ; V )G and denote by$ : P ×V → P ×ρV the natural projection. Consider
the map

$ ◦ (id, ŝ) : P −→ P ×ρ V, p 7→ [p, ŝ(p)].

The letter map is G-invariant, where G acts trivially on the target space. Hence, there is a unique
map s : M → P ×ρ V such that

s ◦ π = $ ◦ (id, ŝ). (36)

In other words, s is defined by requiring that the diagram

P P × V

M P ×ρ V

(id,ŝ)

π $

s

commutes.

Proposition 37. The map

C∞(P ; V )G → Γ
(
P ×ρ V

)
, ŝ 7→ s,

where s is defined by (36), is a bijection.

Proof. We only need to construct the inverse map. Thus, let s be a section of P ×ρ V . For any
p ∈ P there is a unique ŝ(p) ∈ V such that

s
(
π(p)

)
= [p, ŝ(p)].

It is straightforward to check that ŝ is equivariant. �

It will be useful below to have a description of differential forms with values in an associated
bundle in the spirit of Proposition 37. Before stating the claim, we need a few notions.

For g ∈ G denote Rg : P → P , Rg(p) = p · g. The infinitesimal action of the Lie algebra g is
given by the vector field

Kξ(p) :=
d

dt

∣∣∣
t=0

(
p · exp(tξ)

)
, ξ ∈ g.

Since G acts freely on the fibers, we have

Vp := ker π∗|p = {Kξ(p) | ξ ∈ g} ∼= g.

Vp is called the vertical subspace.
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Definition 38.

• A q–form ω with values in some G-representation V is said to be G-equivariant, if R∗g ω =
ρ(g−1)ω;

• A q–form ω with values in some G-representation V is said to be basic, if ω(v1, . . . , vq) = 0
whenever one of the arguments belongs to the vertical subspace.

Denote by Ωq
bas(P ; V )G the space of all basic and G-equivariant q-forms on P with values in

V .

Proposition 39. For any a ∈ Ωq
(
M ; P ×ρ V

)
the pull-back π∗a can be viewed as an element

of Ωq
bas(P ; V )G. Moreover, the map a 7→ π∗a establishes a bijective correspondence between

Ωq
(
M ; P ×ρ V

)
and Ωq

bas(P ; V )G.

Proof. For any tangent vectors v̂1, . . . , v̂q to P the equality

a
(
π∗v̂1, . . . , π∗v̂q

)
= [p, âp(v̂1, . . . , v̂q)]

determines uniquely â ∈ Ωq(P ; V ). Since by definition the vertical space is kerπ∗, the fact that
π∗a is basic is clear. The equivariancy of â follows from a straighforward computation.

Conversely, let â be given. Pick any m ∈ M and any p ∈ π−1(m). Pick also any v1, . . . , vq ∈
TmM and choose v̂1, . . . , v̂q ∈ TpP such that π∗(v̂j) = vj for all j ∈ {1, . . . , q}. These lifts do
exist because π∗ is surjective, however these need not be unique. With this at hand, we can define
a by the equality

am
(
v1, . . . , vq

)
= [p, âp(v̂1, . . . , v̂q)].

Since â is basic and equivariant, a does not depend on the choices involved. �

2.2.3 Connections on principal bundles

The Lie algebra g can be viewed as a G-representation, where the action is the adjoint one:
ad: G→ GL(g). For example, if G is a subgroup of GLk(R), then

adg ξ = g ξ g−1.

Definition 40. A connection form, or simply a connection, on a principal G-bundle P is a G–
equivariant 1–form a with values in the Lie algebra g such that

a(Kξ) = ξ ∀ξ ∈ g.

Denote
adP = P ×ad g.

Theorem 41. For any principal bundle the space of all connections A(P ) is an affine space mod-
elled on Ω1(adP ).

This theorem can be proved in the same manner as Theorem 11. Instead of going through
the details, we describe the only essential modification of the argument used in the proof of The-
orem 11. Namely, given a, a′ ∈ A(P ) the difference b := a − a′ is basic and G-invariant so that
by applying Proposition 39 one can think of b as a 1–form on M with values in adP .

Notice that Theorem 41 states in particular, that A(P ) is non-empty.
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Example 42. U(1) acts freely on

S2n+1 :=
{
z ∈ Cn+1 | |z0|2 + · · ·+ |zn|2 = 1

}
in the diagonal manner. This represents S2n+1 as the total space of the U(1)-bundle

π : S2n+1 → CP n, z 7→ [z], (43)

which is sometimes called the Hopf fibration.
The infinitesimal action of U(1) on S2n+1 is given by the vector field

v(z) =
(
iz0, . . . , izn

)
.

There is a unique connection a ∈ Ω1
(
S2n+1;Ri

)
such that ker a = v⊥. Explicitly,

az(u) = 〈v(z), u〉 i, where u ∈ TzS2n+1.

Since the action of U(1) preserves the Riemannian metric of the sphere, a is an invariant 1-form.
It remains to notice that for abelian groups the notions of equivariant and invariant forms coincide.
Thus, a is a connection 1-form on (43).

Exercise 44. Prove that the associated bundle S2n+1 ×U(1) C is (canonically) isomorphic to the
tautological line bundle:

O(−1) :=
{(

[z], w
)
∈ CP n × Cn+1 | w ∈ [z] ∪ {0}

}
.

The definitions of a connection on a vector and principal bundles differ significantly and the
reader may wonder what is the relation between these two notions. The following result yields an
answer to this question.

First notice that by differentiating ρ : G → GL(V ) we obtain an action of g on V , i.e., a Lie
algebra homomorphism

ρ∗|1 : g→ End(V ). (45)

This way one can think of a connection a as a 1-form with values in End(V ) provided a represent-
ation V is given.

Theorem 46.

(i) Let E be a vector bundle. Any connection ∇ on E determines a unique connection a on the
frame bundle such that

e∗a = A(∇, e).
Here we think of a local frame e as a local section of Fr(E) and A(∇, e) is the local connec-
tion 1–form of∇ with respect to e.

(ii) Let P be a principal G–bundle. Any connection a on P induces a unique connection ∇ on
any associated vector bundle P ×ρ V such that

π∗∇s = dŝ+ a · ŝ. (47)

Here the right hand side is a basic and G-invariant 1–form on P and the equality is under-
stood in the sense of Proposition 39.
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Proof. The proof consists of a number of the following steps.

Step 1. Denote
R̂ : P ×G −→ P, R̂(p, g) = p · g.

Then the differential R̂∗ at (p, g) satisfies:

R̂∗(v,w) = (Rg)∗v +K(Lg−1)∗w(p · g),

where Lg−1 : G→ G, h 7→ g−1h, v ∈ TpP , and w ∈ TgG.

The proof of this step is a simple computation, which is left as an exercise.

Step 2. Let e be a local frame of E over U . For any 1-form A ∈ Ω1(U ; glk(R)) there is a unique
connection a on Fr(E)|U such that

e∗a = A.

Since e is a section of Fr(E)|U , we have π∗ ◦ e∗ = idU and therefore e∗ is injective. Hence, by
the dimensional reasons, we have Te(m)P = Ve(m) ⊕ Im e(m)∗. Therefore, we can define

ae(m)

(
Kξ + e∗v

)
= ξ + A(v).

This extends to a unique G-invariant 1-form on Fr(E)|U . The equality

(Rg)∗Kξ = Kadg−1 ξ,

which can be checked by a straightforward computation, implies that a is a connection.

Step 3. We prove (i).

Choose two local frames e and e′, which we may assume to be defined on the same open set U
(restrict to the intersection of the corresponding domains if necessary). The equalities

ae(m)

(
e∗·
)

= Am(·) and a′e′(m)

(
e′∗·
)

= A′m(·)
determine unique GLk(R)–invariant 1-forms a and a′ on Fr(E)|U by Step 2.

We have

e′∗a(·) = ae′
(
e′∗ ·

)
= ae·g

((
R̂ ◦ (e, g)

)
∗ ·
)

= ae·g

((
Rg)∗ ◦ e∗ ·

)
+ ae·g

(
Kg−1dg

(
e · g))

= g−1ae(e∗·)g + g−1dg = A′(·).
Here the second equality follows by Step 1 and the last one by (14). Thus, we conclude that a = a′

on the intersection of the domains of local frames e and e′. Thus, a is globally well-defined.

Step 4. We prove (ii).

By the equivariancy of ŝ : P → V we have(
dŝ+ a · ŝ

)
(Kξ) = −ξ · ŝ+ a(Kξ) · ŝ = 0,

i.e., dŝ + a · ŝ is a basic 1-form, which is G-invariant as well. Hence, there is a 1-form ∇s on M
such that (47) holds. Moreover, for any G-invariant function f on P we have the equality

d(f · ŝ) + a · (f · ŝ) = df ⊗ ŝ+ f
(
dŝ+ a · ŝ

)
,

which shows that∇ is a connection. This finishes the proof of this theorem. �
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One immediate corollary of this theorem is that a connection on E induces a connection
on E∗, End(E) ans so on. Indeed, these bundles can be interpreted as associated bundles for
P = Fr(E) and the corresponding GLk(R)–representations. A more direct characterization of the
induced connections is given in the following.

Exercise 48. Let∇ be a connection on E. Show that the following holds.

(i) There is a unique connection on E∗, still denoted by∇, such that

d〈α, s〉 = 〈∇α, s〉+ 〈α,∇s〉 ∀α ∈ Γ(E∗) and ∀s ∈ Γ(E),

where 〈·, ·〉 denotes the natural pairing E∗ ⊗ E → R. This connection coincides with the
induced one.

(ii) There is a unique connection on End(E), still denoted by∇, such that

∇
(
ϕ(s)

)
= (∇ϕ)(s) + ϕ(∇s) ∀ϕ ∈ Γ(End(E)) and ∀s ∈ Γ(E),

This connection coincides with the induced one.

2.2.4 The curvature of a connection on a principal bundle

Local expression (20) of the curvature form suggests the following construction. Let a be a connec-
tion on a principal G–bundle P . The 2-form da + 1

2
[a ∧ a] with values in g is clearly G-invariant.

This form is also basic as the following computation shows:

ıKξ
(
da+

1

2
[a ∧ a]

)
= LKξa− d

(
ıKξa

)
+

1

2

[
a(Kξ), a(·)

]
− 1

2

[
a(·), a(Kξ)

]
= −[ξ, a] + 0 +

1

2
[ξ, a] +

1

2
[ξ, a]

= 0.

Here LK denotes the Lie derivative with respect to a vector field K and the first equality uses
Cartan’s magic formula

LK = d ıK + ıKd.

Hence, by Proposition 39 we obtain that there is some Fa ∈ Ω2(M ; ad P ) such that

π∗Fa = da+
1

2
[a ∧ a]. (49)

Definition 50. The 2–form Fa defined by (49) is called the curvature form of a.

Example 51. Let us compute the curvature of the connection a that was constructed in Example 42
in the simplest case n = 1. On the 3-sphere we have the following vector fields

v1 := (−x1, x0,−x3, x2), v2 := (−x2, x3, x0,−x1), and v3 := (−x3,−x2, x1, x0),

which at each point yield an orthonormal oriented basis of the tangent space to the sphere. It is
worthwhile to notice that v1 coincides with the vector field v from Example 42.
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By the definition of the connection form a, we have

a =
(
−x1 dx0 + x0 dx1 − x3 dx2 + x2 dx3

)
i.

Hence,
π∗Fa = da = 2

(
dx0 ∧ dx1 + dx2 ∧ dx3

)
i.

In particular, we have
Fa(π∗v2, π∗v3) = π∗Fa(v2, v3) = 2 i.

It can be shown that the quotient metric on S3/U(1) yields the round metric on the sphere of radius
1/2. Explicitly, the corresponding isometry is given by

(z0, z1) 7→
(
z0z̄1,

1
2
(|z0|2 − |z1|2)

)
.

Here we think of S3 as a subset of C2.
Since (π∗v2, π∗v3) is an oriented orthonormal basis of the tangent space of S2

1/2, we conclude
that Fa = 2 volS2

1/2
i, where volS2

1/2
is the volume form of the standard round metric on S2

1/2.
Notice that ∫

S2

Fa = 2 Vol(S2
1/2) i = 2π i.

The proof of the following proposition is left as an excercise.

Proposition 52. Let a be a connection on a principal bundle P and let V be a G–representation.
Using (45) we can think of Fa as a 2-form with values in End(P ×ρ V ). With these identifications
in mind, the curvature of the induced connection∇ on P ×ρ V equals Fa. �

Given a local trivialization of P , i.e., a section σ over an open subset U ⊂ M , we say that
A := σ∗a ∈ Ω1(U ; g) is a local representation of a with respect to σ. Then over U we have

Fa = σ∗π∗Fa = σ∗
(
da+

1

2
[a ∧ a]

)
= dA+

1

2
[A ∧ A].

One of the most basic properties of the curvature form is the so called Bianchi identity.

Proposition 53 (Bianchi identity). Let a be a connection on P . Then the curvature form F∇ satisfies

d∇aFa = 0,

where ∇a is the connection on adP induced by a.

Proof. Let A be a local representation of a as above. We have

d∇aFa = d
(
dA+

1

2
[A ∧ A]

)
+
[
A ∧

(
dA+

1

2
[A ∧ A]

)]
=

1

2
[dA ∧ A]− 1

2
[A ∧ dA] + [A ∧ dA] +

1

2

[
A ∧ [A ∧ A]

]
= 0.

Here the first three summands sum up to zero because [ω, η] = −[η, ω] for any ω ∈ Ω2(U ; g) and
η ∈ Ω1(U ; g); The vanishing of the last summand follows from the Jacobi identity. �
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Remark 54. Thinking of F̂A := π∗FA = dA + 1
2
[A ∧ A] also as a curvature form of A, the

computation in the proof of Proposition 53 yields the following equivalent form of the Bianchi
identity:

dF̂A = [F̂A ∧ A]. (55)

Indeed, this can be obtained by the computation: dF̂A = [dA ∧ A] = [F̂A ∧ A].

Given a bundle P →M and a map f : N →M we can construct the pull-back bundle f ∗P →
N just like in the case of vector bundles. Informally speaking, we have the equality of fibers
(f ∗P )n = Pf(n) and this defines f ∗P . More formally, define

f ∗P :=
{

(p, n) ∈ P ×N | f(n) = π(p)
}
.

It is easy to see that f ∗P is a submanifold of P×N . Moreover, we have a projection$ : f ∗P → N ,
which is just the restriction of the natural projection (p, n) 7→ n. The structure group G clearly acts
on P such that the action on the fibers $−1(n) = Pf(n) is transitive. Moreover, we also have a
natural G-equivariant map f̂ : f ∗P → P , which covers f , i.e., the diagram

f∗P P

N M

f̂

$ π

f

commutes.
For future use we note the following statement, whose proof is left as an exercise.

Proposition 56. Let A be a connection on P . Then f ∗A := f̂ ∗A is a connection on f ∗P and
Ff∗A = f ∗FA. �

2.2.5 The gauge group

For a principal bundle P →M , the automorphism group

G(P ) :=
{
ψ : P → P | π ◦ ψ = π, ψ(pg) = ψ(p)g ∀p ∈ P, g ∈ G

}
is called the gauge group.

Since ψ(p) lies in the same fiber as p and G acts transitively on the fibers, we can write

ψ(p) = p f̂(p), (57)

where f̂ : P → G is some map. The equivariancy of ψ is then equivalent to

f̂(pg) = g−1pg. (58)

In other words, f̂ can be identified with some section f of the bundle

AdP := P ×G G,

where G acts on itself by conjugation.
Conversely, given f ∈ Γ(AdP ), we can construct an automorphism ψ of P via (57). In other

words we have a natural bijective map

G(P )→ Γ(AdP ).
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Exercise 59. Fix some non-negative integer k. Prove that Ck(M ; AdP ) is a Banach Lie group.
Moreover, show that the Lie algebra of this group is Ck(M ; adP ).

Example 60. Assume G is abelian. Then (58) just means that f̂ is an invariant map so that the
corresponding section f can be identified with a map M → G. This shows that for an abelian
group G we have

G(P ) ∼= C∞(M ; G).

Just like in the case of vector bundles, the gauge group acts naturally on the space of all con-
nections, i.e., we have a map

A(P )× G(P )→ A(P ), (a, ψ) 7→ a · ψ := ψ∗a. (61)

Exercise 62. Let E := P ×G, ρ V be an associated vector bundle. Show that the following:

(i) The representation ρ induces a natural homomorphism of gauge groups γ : G(P )→ G(E);
(ii) The corresponding infinitezimal map dρe : g→ EndV induces a Lie algebra homomorphism

Ck(M ; adP )→ Ck(M ; EndE);
(iii) ∇a·g = g−1∇ag. Here a ∈ A(P ), g ∈ Γ(AdP ), and ∇a denotes the connection on E

induced by a.

Exercise 63. Show that the infinitezimal action of the gauge group is given by

A(P )× Γ(adP )→ Ω0(adP ), (a, ξ) 7→ −daξ.

2.3 The Levi–Civita connection
As we have seen above, any vector bundle of positive rank over a manifold of positive dimension
admits a large family of connections. Moreover, in general there is also no preferred connections.
The situation is somewhat different in the case of the tangent bundle of a manifold, where it turns
out that a choice of a preferred connection does exist under certain circumstances.

Thus, pick a connection∇ on TM →M . For any vector fields v, w on M define the torsion of
∇ by

T (v, w) := ∇vw −∇wv − [v, w].

Clearly, T is antysymmetric. It is also easy to check that T is tensorial in both v and w, i.e.,
T (f1v, f2w) = f1f2T (v, w) for any f1, f2 ∈ C∞(M). Hence, applying Lemma 12 we obtain that
T ∈ Ω2(M ; TM).

Definition 64. A connection ∇ on the tangent bundle TM is called torsion-free, if T ≡ 0, i.e., if
the following

∇vw −∇wv = [v, w] (65)

holds for any vector fields v and w.

Exercise 66. Let ∇ be a connection on the tangent bundle. Slightly abusing notations, denote also
by ∇ the induced connection on T ∗M . Consider the map

Ω1(M)
∇−−→ Γ(T ∗M ⊗ T ∗M)

Alt−−→ Ω2(M), (67)

where the last map is the natural projection (alternation) T ∗M ⊗ T ∗M → Λ2T ∗M . Show that∇ is
torsion-free if and only if (67) coincides with the de Rham differential.
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Theorem 68. For any Riemannian manifold (M, g) there is a unique metric torsion-free connection
∇. �

The proof of this classical result, which is sometimes called the fundamental theorem of Rieman-
nian geometry, can be found for instance in [Sal89, Prop. 2.1]. The unique connection described in
the above theorem is called the Levi-Civita connection. It is uniquely characterized by (65) together
with

d
(
g(v, w)

)
= g(∇v, w) + g(v,∇w).

The curvature form R of the Levi-Civita connection can be viewed as a section of Λ2T ∗M ⊗
End(TM). This can be decomposed into various components. For example, in terms of a local
orthonormal frame ei we can define a quadratic form

Ricg(v,w) := −
∑
i

g
(
R(ei, v)ei,w

)
,

which is called the Ricci curvature. The trace of the Ricci curvature, i.e.,

sg :=
∑
i

Ric(ei, ei)

is called the scalar curvature. These are important characteristics of the metric g. An interested
reader may wish to consult [Joy07, Sal89, Bes08] for more information on these matters. For us,
the importance of the scalar curvature is explained by its appearance in the Weitzenböck formula
below, see Corollary 133.

2.4 Classification of U(1) and SU(2) bundles
It is more convenient in this section to work in a topological category rather than the smooth one.
The reader will have no difficulties to adopt the corresponding notions to this setting.

Definition 69. Let G be a compact Lie group. A topological space E equipped with an action of
G is said to be a classifying bundle for G, if E is contractible and the G–action is free.

Denoting B := E/G, we obtain a natural projection E → B so that E could be thought of
as a principal2 G–bundle over B. If E exists, it is easy to see that E is unique up to a homotopy
equivalence.

One can prove that for a compact Lie group a classifying space always exist. An interested
reader may wish to consult [GS99b, Sect. 1.2]. Also, we take the following result as granted.

Theorem 70 ([GS99b, Thm. 1.1.1 and Rem. 2]). Let P → M be a (topological) principal G–
bundle over a manifold M . Then there exists a continuous map f : M → B such that P is iso-
morphic to f ∗E. In fact f is unique up to a homotopy so that the map

f 7→ f ∗E

yields a bijective correspondence between the set of isomorphism classes of principal G-bundles
over M and the set [M ; B] of homotopy classes of maps M → B. �

2The notations E and B are traditional in this context so I will keep to this tradition. The reader should not be
confused by the fact that here E denotes a principal rather than vector bunlde.
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In some sense, the above theorem yields a classification of principal—hence, also vector—
bundles. In praxis it is not always easy to describe the set [M ; B] though. One way to deal with
this problem is via the so called characteristic classes, which I describe next.

Definition 71. Let f : M → B be a continuous map. Pick any c ∈ H•(B; R), where R is a ring.
Then f ∗c ∈ H•(M ; R) is called a characteristic class of f ∗E.

It is worth pointing out that characteristic classes depend on the isomorphism class of the bundle
only.

Usually, characteristic classes are easier to deal with than the set of homotopy classes of maps.
The most common choices for the ring R are Z, Z/nZ, R, and C.

In some cases the classifying bundle can be constructed fairly explicitly. I restrict myself to the
following two cases, namely G = U(1) and G = SU(2), which are most commonly used in gauge
theoretic problems.

2.4.1 Complex line bundles

It follows from Exercise 29 that the classification problems for complex line bundles and principal
U(1)-bundles are equivalent. Even though what follows below can be described in terms of vector
bundles only, the language of U(1)–bundles has certain advantages and will be mainly used below.

Consider the following commutative diagram

S3 S5 . . . S2n+1 . . .

CP1 CP2 . . . CPn . . .

where the horizontal arrows are natural inclusions. For example, the inclusion of the spheres is
given by

Cn ⊃ S2n−1 3 (z0, . . . , zn−1) 7→ (z0, . . . , zn−1, 0) ∈ S2n+1 ⊂ Cn+1,

which is a U(1)–equivariant map.
The direct limit construction yields a CW-complex S∞ equipped with a free U(1)-action. S∞

can be shown to be contractible. Furthermore, we have also a CW-complex CP∞ so that the natural
quotient map

S∞ → CP∞

is the classifying bundle for the group U(1).

Example 72 (Classification of line bundles on 2–manifolds). Let M be an oriented two–manifold.
A continuous map f : M → CP∞ is homotopic to a map, which takes values in the 2-skeleton
CP 1 ⊂ CP∞ so that we have the equality [M ; CP∞] = [M ; CP 1]. Topologically, CP 1 is just the
2-sphere so that we have a well–defined degree-map

[M ; S2]→ Z, [f ] 7→ deg f,

which is in fact a bijection. Thus, a complex line bundle L on an oriented two–manifold is classified
by an integer d, which is called the degree of L.
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It is easy to see that the cohomology ring H•
(
CP∞; Z

)
is generated by a single element a ∈

H2
(
CP∞; Z

)
. We can fix the choice of the generator by requiring

〈a, [CP 1]〉 = 1, (73)

where 〈·, ·〉 is the pairing between the homology and cohomology groups.
With this understood, to any principal U(1)-bundle P → M (equivalently, to any complex line

bundle L→ M ) we can associate a cohomology class as follows. If f : M → CP∞ is a map such
that P is the pull-back of the bundle S∞ → CP∞, then

c1(P ) := −f ∗a ∈ H2(M ; Z). (74)

The minus sign in this definition is a convention.

Definition 75. The class c1(P ) defined by (74) is called the first Chern class of P .

If L → M is a complex line bundle, we can choose a Hermitian scalar product, or, in other
words, we can choose a U(1)-structure P ⊂ Fr(L). Then

c1(L) := c1(P )

is also called the first Chern class of L.

Exercise 76. Check that the first Chern class of L does not depend on the choice of the Hermitian
scalar product on L.

Theorem 77. The first Chern class of the complex line bundle has the following properties:

(i) c1(C) = 0, where C is the product bundle;

(ii) c1(L1 ⊗ L2) = c1(L1) + c1(L2) for all line bundles L1 and L2 over the same base M ;

(iii) c1(L∨) = −c1(L), where L∨ := Hom(L;C) is the dual line bundle;

(iv) c1(f ∗L) = f ∗c1(L) for all line bundles L→M and all (continuous) maps f : N →M . �

2.4.2 Quaternionic line bundles

Let H denote the R-algebra of quaternions. One can think of the (compact) symplectic group

Sp(1) :=
{
q ∈ H | |q|2 = qq̄ = 1

}
as a quaternionic analogue of U(1). It is easy to see that Sp(1) is isomorphic to SU(2). Indeed, it
is easy to write down an isomorphism explicitly:

Sp(1)→ SU(2), q = z + wj 7→
(
z w
−w̄ z̄

)
.

Just like U(1) acts freely on S2n+1, Sp(1) acts freely on S4n+3 =
{

(h0, · · · , hn) ∈ Hn |
|h0|2 + · · ·+ |hn|2 = 1

}
in the diagonal manner so that we have a natural principal Sp(1)-bundle:

S4n+3 → HPn.

The commutative diagram
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S7 S11 . . . S4n+3 . . .

HP1 HP2 . . . HPn . . .

leads to the construction of the classifying bundle for Sp(1):

S∞ → HP∞.

Notice that HP∞ is (an infinite-dimensional) CW-complex, which has exactly one cell of dimension
4n. This implies in particular that the cohomology ring H•(HP∞; Z) is generated by a single
generator b of degree 4. The choice of b can be fixed for example by requiring

〈b, [HP1]〉 = 1.

Proposition 78. Let M be a manifold of dimension at most 3. Any Sp(1)-bundle over M is trivial.

Proof. Given a principal Sp(1)-bundle P , by Theorem 70 we can find a map f : M → HP∞
such that f ∗S∞ is isomorphic to P . Furthermore, f is homotopic to a map f1 that maps into the
3-skeleton of HP∞, which is a point. Hence, P is trivial. �

Let M be a manifold of arbitrary dimension. To any map f : M → HP∞ we can associate a
class f ∗b ∈ H4(M ; Z), where b is a generator of H•(HP∞; Z) as above.

Definition 79. Let P → M be a principal Sp(1)–bundle. If f : M → HP∞ is a map such that
f ∗S∞ ∼= P , then

c2(P ) := −f ∗b ∈ H4(M ; Z)

is called the second Chern class of P .

Remark 80. The terminology may seem to be somewhat strange at this point. The reason is that for
a principal U(r)–bundle P one can define r characteristic classes c1(P ), c2(P ), . . . , cr(P ), where
cj(P ) ∈ H2j(M ; Z). In the particular cases described above, this yields the constructions of the
first and the second Chern classes.

3 The Chern–Weil theory

3.1 The Chern–Weil theory
In this section we could equally well work with both R and C as ground fields. I opt for C mainly
for the sake of definiteness. The modifications needed for the case of R as a ground field are
straightforward.

Let p : g → C be an ad–invariant homogeneous polynomial of degree d. This means the
following:

• Given a basis ξ1, . . . , ξn of g, the expression p
(
x1ξ1 + · · ·+ xnξn

)
is a polynomial of degree

d in x1, . . . , xn;
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• p(adg ξ) = p(ξ) for all g ∈ G and all ξ ∈ g;

• p(λξ) = λdp(ξ) for all λ ∈ R and all ξ ∈ g.

Example 81.

(a) For g = u(r) the map pd(ξ) = i tr ξd is an ad-invariant polynomial of degree d.

(b) Choose g = u(r) again and define polynomials c1, . . . , cr of degrees 1, . . . , r respectively by
the equality

det
(
λ1 +

i

2π
ξ
)

= λr + c1(ξ)λr−1 + · · ·+ cr(ξ).

For example, cr(ξ) = ir

(2π)r
det ξ and c1(ξ) = i

2π
tr ξ. Notice also that the equality

det
(
λ1 +

i

2π
ξ
)

= det
(
λ̄1 +

i

2π
ξ
)

implies that each cj takes values in R.

Let P → M be a principal G–bundle equipped with a connection a ∈ Ω1(P ; g). Think of
the curvature form π∗Fa = da + 1

2
[a ∧ a] as a matrix, whose entries are 2-forms on P . Since

forms of even degrees commute, the expression p(π∗Fa) makes sense as an R-valued differential
form of degree at most 2d on P . Since each entry of π∗Fa is basic, so is p(π∗Fa). Moreover, the
ad–invariancy of p implies that p(π∗Fa) is G–invariant. By Proposition 39 applied in the case of
the trivial G–representation we obtain that there is a form p(Fa) on M of degree 2d such that

π∗p(Fa) = p(π∗Fa).

Lemma 82. The following holds:

(i) p(Fa) is closed;

(ii) The de Rham cohomology class of p(Fa) does not depend on the choice of connection a.

Proof. The proof consists of the following steps.

Step 1. We prove (i).

Pick any ξ, ξ1, . . . , ξd ∈ g. Thinking of g as a matrix Lie algebra, I write temporarily adetξξj =
etξξje

−tξ. Slightly abusing notations, denote by p : Symd(g)→ R the d-multilinear function whose
restriction to the diagonal yields the original polynomial p. Then, differentiating the equality

p
(
etξξ1e

−tξ, . . . , etξξde
−tξ) = p(ξ1, . . . , ξd)

with respect to t, yields

p
(
[ξ, ξ1], ξ2, . . . , ξd

)
+ p
(
ξ1, [ξ, ξ2], . . . , ξd

)
+ · · ·+ p

(
ξ1, ξ2, . . . , [ξ, ξd]

)
= 0. (83)

Denote F̂A := π∗FA. Then (83) implies

p
(
[F̂A ∧ A], F̂A, . . . , F̂A

)
+ p
(
F̂A, [F̂A ∧ A], . . . , F̂A

)
+ · · ·+ p

(
F̂A, F̂A, . . . , [F̂A ∧ A]

)
= 0.
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Hence,

d
(
p(F̂A)

)
= p(dF̂A, F̂A, . . . , F̂A) + p(F̂A, dF̂A, . . . , F̂A) + · · ·+ p(F̂A, F̂A, . . . , dF̂A)

= p
(
[F̂A ∧ A], F̂A, . . . , F̂A

)
+ p
(
F̂A, [F̂A ∧ A], . . . , F̂A

)
+ · · ·+ p

(
F̂A, F̂A, . . . , [F̂A ∧ A]

)
= 0.

Here the second equality uses (55). This finishes the proof of (i).

Step 2. Let I = [0, 1] be the interval and ı0, ı1 : M → M × I be the natural inclusions corres-
podnding to the endpoints of the interval. There exist linear maps Q : Ωk(M × I) → Ωk−1(M)
such that for any ω ∈ Ωk(M × I) we have

ı∗1ω − ı∗0ω = dQω −Qdω.

The argument goes just like in the proof of the Poincaré lemma, see for example [BT82,
Prop. 4.1.1]. I omit the details.

Step 3. We prove (ii).

Pick any two connection A0 and A1 and think of At := (1 − t)A0 + tA1 as a connection on
$∗P →M × I , where $ : M × I →M is the natural projection. Then

p(FA1)− p(FA0) = ı∗1p(FAt)− ı∗0p(FAt) = dQp(FAt)

by the previous step. This proves (ii). �

3.1.1 The Chern classes

Let cj be the polynomial of degree j from Example 81.
Let P →M be a principal U(r)–bundle with a connection A. By Lemma 82, cj(FA) is closed,

real valued, and the de Rham cohomology class of cj(FA) does not depend on the choice of the
connection.

Definition 84. The class cj(P ) := [cj(FA)] ∈ H2j
dR(M ;R) is said to be the jth Chern class of P

and
c(P ) := 1 + c1(P ) + · · ·+ cr(P ) ∈ H•(M ;R)

is called the total Chern class of P .

Remark 85. The above definition yields Chern classes as elements of the de Rham cohomology
groups only. In fact, one can show that they lie in the image of H•(M ;Z) → H•dR(M ;R). I will
discuss this briefly in the case of the first two Chern classes below. Also, at this point we have two a
priori unrelated definitions of the first two Chern classes. We will see below that in fact they agree.

Remark 86. Let E be a complex vector bundle of rank r. Choosing a fiberwise Hermitian structure
on E, we obtain a principal U(r)–bundle FrU so that we can define cj(E) := cj(FrU). It is easy to
show that this does not depend on the choice of the Hermitian structure.

Theorem 87. The Chern classes satisfy the following properties

(i) c0(E) = 1 for any vector bundle E;
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(ii) c(f ∗E) = f ∗c(E) for all vector bundles E →M and all maps f : N →M ;

(iii) c(E1 ⊕ E2) = c(E1) ∪ c(E2);

(iv) c
(
O(−1)

)
= 1− a, where O(−1) is the tautological line bundle over P1 and a is the gener-

ator of the cohomology group of P1 such that (73) holds.

The first property above is jut the definition, the remaining properties are called naturality,
Whitney sum formula, and normalization respectively.

Proof. The naturality follows immediately from Proposition 56. The normalization is equivalent
to i

2π

∫
P1 Fa = −1, where a is a unitary connection on the tautological line bundle. This was

established in Example 51.
Thus, we only need to prove the Whitney sum formula. If ∇1 and ∇2 are unitary connections

on E1 and E2 respectively, then the curvature of the corresponding connection on the Whitney sum
is a block diagonal matrix. More precisely, this means that the curvature is a 2-form with values in
End(E1)⊕ End(E2). If A and B are any square matrices, we have

det

(
A 0
0 B

)
= detA detB =⇒ c(F∇1⊕∇2) = det

(
1 + i

2π
F∇1 0

0 1 + i
2π
F∇2

)
= c(F∇1) ∧ c(F∇2).

The latter equality clearly implies the Whitney sum formula. �

Exercise 88. Let E be a vector bundle. Prove that the following holds:

(a) The Chern classes depend on the isomorphism class of E only;

(b) cj(E∨) = (−1)jcj(E) for all j;

(c) If E is trivial, then c(E) = 1;

(d) If E ∼= E1 ⊕ Ck, then cj(E) = 0 for j > rkE − k.

Exercise 89. Show that the tangent bundle of S2 is non-trivial.

Theorem 90. LetL be a complex line bundle. Then the first Chern class in the sense of Definition 84
coincides with the image in H2

dR(M ; R) of the first Chern class in the sense of Definition 75.

Sketch of proof. Let L → M be a complex line bundle. It is not too hard to show that there is
N < ∞ and a smooth map f : M → PN such that f ∗O(−1) is isomorphic to L, where O(−1) is
the tautological bundle of PN . Notice that H2

dR(PN ; R) is one dimensional and generated by the
class Poincaré dual to [P1], where ı : P1 ⊂ PN is a standard embedding.

Pick a Hermitian structure on O(−1) and a Hermitian connection ∇. Then ı∗O(−1) is the
tautological bundle of P1, so that i

2π
ı∗F∇ represents the first Chern class of OP1(−1). Hence, by

Example 51 we have 〈
[ i
2π
ı∗F∇], [P1]

〉
= −1

Hence, c1(O(−1)) = −a so that c1(L) = c1(f ∗L) = −f ∗a. �
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Remark 91. One can prove arguing along similar lines that in the case of SU(2)–bundles the two
definitions of the second Chern class agree on the level of the de Rham cohomology groups. I leave
the details to the readers. Moreover, one can also show that the infinite Grassmannian Grk(C∞) is
a classifying space for the group U(k). Thus one could also define the Chern classes as pull-backs
of certain classes on Grk(C∞).

Remark 92. One corollary of Definition 75 is follows. Let L→M be a Hermitian line bundle and
h : Σ→M a smooth map, where Σ is a compact oriented two–manifold. Then we have

i

2π

∫
M

h∗F∇ ∈ Z,

where∇ is any Hermitian line bundle. This property may be quite surprising if one’s starting point
is Definition 84.

In particular, if M is itself a compact oriented two-dimensional manifold (and h is the identity
map), then

i

2π

∫
M

FA

is an integer, which coincides with the degree of L, cf. Example 72.

Remark 93. A straightforward computation yields that for any matrix ξ ∈ su(2) we have tr ξ2 =
−2 det ξ. Hence, for an SU(2)–bundle P we have

c2(P ) =
1

8π2

[
tr(FA ∧ FA)

]
∈ H4

dR(M ;R).

In particular, ifM is a closed oriented four-manifold, the integration yields an isomorphismH4
dR(M ; R) ∼=

R. In fact, just as in the case of line bundles above, we have

c2(P ) =
1

8π2

∫
M

tr(FA ∧ FA) ∈ Z. (94)

3.2 The Chern–Simons functional
In this section I will restrict myself to dimension three and G = SU(2). Thus, let M be a three
manifold equipped with an SU(2)–bundle P → M . Notice that P is trivial as we have seen
in Proposition 78.

As a matter of fact, any closed oriented three-manifold is a boundary of a compact oriented
four-manifold, say ∂X = M . Assume there is an extension of P to X , i.e., a bundle PX such that
PX |M = P . In this case any connection A on P can be extended to a connection AX on PX so that
we can form the integral

1

8π2

∫
X

tr
(
FAX ∧ FAX

)
.

If we take any other extension (X ′, P ′X , A
′
X), we can glue X and X ′ along their common boundary

to form a four-manifold without boundary. Strictly speaking, when performing the gluing we have
to change the orientation of X ′ so that ∂X ′ is equipped with the orientation opposite to that of M
to have the resulting manifold oriented. This together with (94) yields, that the difference

1

8π2

∫
X

tr
(
FAX ∧ FAX

)
− 1

8π2

∫
X′

tr
(
FA′X ∧ FA′X

)
30



Introduction to Gauge Theory

is an integer. Hence,

ϑ(A) :=
1

8π2

∫
X

tr
(
FAX ∧ FAX

)
(95)

is well-defined as a function with values in R/Z. This is called the Chern–Simons functional.

While this definition makes transparent the relation of the Chern–Simons functional with the
Chern–Weil theory, it is possible to compute the value of the Chern–Simons functional directly
without extending A to a four-manifold. In fact, choosing a trivialization of P we can think of A
as a 1-form on M with values in su(2). Then

ϑ(A) =
1

8π2

∫
M

tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
.

Notice that this expression does not yield an R–valued function. The reason is that by changing the
trivialization of P the value of ϑ changes by an integer so that we obtain again a map to the circle.

Exercise 96.

(a) For A ∈ Ω1(X), where X is a four-manifold, prove the equality

d tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
= tr

(
FA ∧ FA

)
. (97)

Notice the following: In the special case X = M × R denote by At the pull-back of A to
M × {t}. Then (97) clearly implies

ϑ(At)− ϑ(At0) =

∫
M×[t0,t]

tr
(
FA ∧ FA

)
.

(b) Prove that the two definition of the Chern–Simons functional agree.

(c) Prove that the values of the Chern–Simons functional with respect to two different trivializa-
tions differ by an integer.

(d) Let g be a gauge transformation, which can be though of as a map M → SU(2) ∼= S3. Show
that

ϑ(A · g) = ϑ(A) + deg g.

Let us compute the differential of ϑ. For a ∈ Ω1(M ; su(2)) we have

dϑA(a) =
1

8π2

∫
M

tr
(
a ∧ dA+ A ∧ da+ 2a ∧ A ∧ A

)
=

1

4π2

∫
M

tr
(
FA ∧ a

)
.

In the second equality the integration by parts is used. Hence, we conclude the following.

Proposition 98. The critical points of the Chern–Simons functional are flat connections, i.e., con-
nections A such that FA = 0. �
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3.3 The modui space of flat connections
Even though in Section 3.2 I opted to work with three-manifolds and G = SU(2), the notion of a
flat connection clearly makes sense for any background manifold and any structure group. Thus,
we do not need to impose these restrictions in this section.

Let P →M be a principal G–bundle. Denote by A[(P ) the space of all flat connections on P .
The gauge group G(P ) acts on A[(P ) so that we can form the moduli space of flat connections:

M[(P ) := A[(P )/G(P ).

Such moduli spaces are typical objects in gauge theory that we will meet many times below. The
main questions we are interested in are the following: IsM[(P ) compact? IsM[(P ) a manifold?

An important point to notice is thatM[ represents the space of all solutions of a non-linear PDE
modulo an equivalence relation, so that in essence the question is to describe topological properties
of the space of all solutions of a non-liner PDE. In general, this may be a hard question, however,
in this particular case we will see below that this can be done with a little technology involved.

However, why could one be potentially interested in spaces likeM[? The two main reasons are
as follows: First, sometimesM[ encodes a subtle information about the background manifold M
(as well as the bundle P ) and thus can be used for instance as a tool in studies of the topology of
M ; Secondly, moduli spaces come often equipped with an extra structure, which may be of interest
on its own. In these notes I will mainly emphasize the first point, while the second one will be only
briefly mentioned below.

3.3.1 Parallel transport and holonomy

Let E →M be a vector bundle equipped with a connection∇. For any (smooth) curve γ : [0, 1]→
M , γ∗∇ is a connection on γ∗E. A section s ∈ Γ(γ∗E) is said to be parallel along γ, if (γ∗∇)(s) =
0.

Remark 99. If γ is a simple embedded curve, then s can be thought of as a section of E defined
along the image of γ.

Since any bundle over an interval is trivial, we can trivialize γ∗E ∼= Rk × [0, 1] so that γ∗∇
can be written as d

dt
+ B(t) dt, where B : [0, 1] → Mk(R) is a map with values in the space of

k× k-matrices. Thinking of s as a map [0, 1]→ Rk, we obtain that s is parallel along γ if and only
if s is a solution of the equations:

ṡ+ A(t)s(t) = 0.

By the main theorem of ordinary differential equations, the above equation has a unique solution
for any initial value s0 and this solution is defined on the whole interval [0, 1].

Definition 100. If s ∈ Γ(γ∗E) is parallel along γ, then s(1) ∈ Eγ(1) is called the parallel transport
of s(0) = s0 ∈ Eγ(0) with respect to∇.

The above consideration shows in fact that for any connection ∇ any curve γ we have a linear
isomorphism

PTγ : Eγ(0) → Eγ(1),

which is called the parallel transport.
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In a special case, namely when γ is a loop, the parallel transport yields an isomorphism of the
fiber. If we concatenate two loops, the parallel transport is the composition of the parallel transports
corresponding to the initial loops. Hence, for a fixed connection the set of all parallel transports is
in fact a group.

Definition 101. Pick a point m ∈M . The group

Holm(∇) :=
{

PTγ ∈ GL(Em) | γ is a loop based at m
}

is called the holonomy group of∇ based at m.

Choosing a basis of Em, we can think of Holm(∇) as a subgroup of GLk(R). A stand-
ard argument shows that if m and m′ lie in the same connected component, then the holonomy
groups Holm(∇) and Holm′(∇) are conjugate, i.e., there is A ∈ GLk(R) such that Holm′(∇) =
AHolm(∇)A−1. With this understood, we can drop the basepoint from the notation. Even though
Hol(∇) is defined up to a conjugacy only, it is still commonly referred to as a subgroup of GLk(R).

Exercise 102. Show that the following holds:

• ∇ is Euclidean =⇒ PTγ is orthogonal =⇒ Hol(∇) ⊂ O(k).

• ∇ is complex =⇒ PTγ is complex linear =⇒ Hol(∇) ⊂ GLk/2(C).

• ∇ is complex Hermitian =⇒ PTγ is unitary =⇒ Hol(∇) ⊂ U(k/2).

Remark 103. The concept of the parallel transport also makes sense for connections on principal
bundles. The construction does not differ substantially from the case of vector bundles. The details
are left to the readers.

3.3.2 The monodromy representation of a flat connection

Let ∇ be a flat connection on a vector bundle E of rank k. We can view the parallel transport as a
map

γ 7→ Hol(∇; γ),

where γ is a loop based at some fixed point m. If A is flat, this map depends on the homotopy class
of γ only [KN96, II.9] so that effectively we obtain a representation of the fundamental group:
ρA : π1(M)→ GLk(R).

Exercise 104. Show that a gauge-equivalent connection yields a conjugate representation.

Conversely, given a representation ρ : M̃ → GLk(R) we can construct the bundle

E := M̃ ×π1(M), ρ Rk.

Here π1(M) acts on M̃ by the deck transformations. This means that M̃ can be viewed as a
principal π1(M)–bundle so that E is the associated bundle corresponding to the representation ρ.

This bundle is equipped with a natural flat connection. Indeed, interpreting a section s of E as
a π1(M)–equivariant map ŝ : M̃ → Rk, we can define∇s via

π∗∇s = dŝ,
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cf. (47).
These constructions establish a bijective correspondence between the space of all flat connec-

tionsM[ and the representation variety

R(M ; GLk(R)) :=
{
ρ : π1(M)→ GLk(R) is a group homomorphism

}
/Conj,

where two representations are considered to be equivalent if they are conjugate.

Remark 105. We could equally well consider flat connections on Euclidean or Hermitian vec-
tor bundles. This requires only cosmetic changes and the outcome is the representation space
R(M ; O(k)) and R(M ; U(k)) respectively. Even more generally, the constructions above can be
modified to the case of principal G–bundles so that the space of flat G–connections correspond to
R(M ; G). I leave the details to the readers.

Since the fundamental group of a manifold is finitely presented, we can choose a finite number
of generators of π1(M), say γ1, . . . , γN . Then any representation ρ is uniquely specified by the
images of the generators gi = ρ(γi) ∈ G, which satisfy a finite number of relations. This shows the
inclusion

R(M ; G) ⊂ GN/G,

where G acts by the adjoint action on each factor. This implies in particular the following.

Proposition 106. Let M be a manifold. If G is a compact Lie group, then the spaceM[ of all flat
G-connections is compact. �

Example 107. For M = Tn, we have clearly

R(Tn; U(1)) = Hom(Tn,U(1)) = U(1)n ∼= Tn.

Example 108. Let Σ be a compact Riemann suface of genus γ without boundary. It is well-known
that the fundamental group of Σ has the following representation

π1(Σ) ∼=
〈
a1, . . . , aγ, b1, . . . , bγ |

∏
i

[ai, bi] = 1
〉
.

Hence,
R(Σ,G) =

{
A1, . . . , Aγ, B1, . . . , Bγ ∈ G |

∏
i

[Ai, Bi] = 1
}
/G.

For instance, for G = SL(n;C) the representation variety has a rich geometric structure, which is
being actively studied, see for example [BGPG07, Got14, Ray18] and references therein.

4 Dirac operators

4.1 Spin groups and Clifford algebras
In this subsection I recall briefly the notions of Clifford algebra and spin group focusing on low
dimensions. More details can be found for instance in [LM89].

Since π1(SO(n)) ∼= Z/2Z for any n ≥ 3, there is a simply connected Lie group denoted by
Spin(n) together with a homomorphism Spin(n) → SO(n), which is a double covering. This
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characterizes Spin(n) up to an isomorphism. The spin groups can be constructed explicitly with
the help of Clifford algebras, however in low dimensions this can be done more directly with the
help of quaternions.

Since Sp(1) ∼= SU(2) is diffeomorphic to the 3–sphere, this is a connected and simply connec-
ted Lie group. Identify ImH = {h̄ = −h} with R3 and consider the homomorphism

α : Sp(1)→ SO(3), q 7→ Aq, (109)

where Aqh = qhq̄. It is easy to check that the corresponding Lie-algebra homomorphism is in fact
an isomorphism. Since SO(3) is connected, α is surjective. Moreover, kerα = {±1}. Hence,
(109) is a non-trivial double covering, i.e., Spin(3) ∼= Sp(1).

To construct the group Spin(4), recall first that the Hodge operator ∗ yields the splitting Λ2(R4)∗ =
Λ2

+(R4)∗ ⊕ Λ2
−(R4)∗, where Λ2

±(R4)∗ = {ω | ∗ω = ±ω}. Since so(4) ∼= Λ2(R4)∗ = Λ2
+(R4)∗ ⊕

Λ2
−(R4)∗ = so(3) ⊕ so(3), the adjoint representation yields a homomorphism SO(4) → SO(3) ×

SO(3).
Identify R4 with H and consider the homomorphism3

β : Sp+(1)× Sp−(1)→ SO(4), (q+, q−) 7→ Aq+, q− ,

whereAq+, q−h = q+hq̄−. An explicit computation shows that the composition Sp+(1)×Sp−(1)→
SO(4)→ SO(3)×SO(3) is given by (q+, q−) 7→ (Aq+ , Aq−). Hence, the Lie algebra homomorph-
ism corresponding to β is an isomorphism and ker β is contained in {(±1,±1)}. As it is readily
checked, ker β = {±(1, 1)} ∼= Z/2Z. Hence, Sp+(1)× Sp−(1) ∼= Spin(4).

Let U be an Euclidean vector space. Then the Clifford algebra Cl(U) is the tensor algebra
TU = R ⊕ U ⊕ U ⊗ U ⊕ . . . modulo the ideal generated by elements u ⊗ u + |u|2 · 1. In other
words, Cl(U) is generated by elements of U subject to the relations u · u = −|u|2. For instance,
Cl(R1) ∼= R[x]/(x2 + 1) ∼= C. The algebra Cl(R2) is generated by 1, e1, e2 subject to the relations
e2

1 = −1 = e2
2 and e1 · e2 = −e2 · e1, which follows from (e1 + e2)2 = −2. In other words,

Cl(R2) ∼= H. In general, Cl(Rn) is generated by 1, e1, . . . , en subject to the relations e2
i = −1 and

ei · ej = −ej · ei for i 6= j.
It can be shown that the subgroup of Cl(Rn) generated by elements of the form v1 · v2 · . . . · v2k

is isomorphic to Spin(n), where each vj ∈ Rn has the unit norm. In particular, this shows that
Spin(n) is a subgroup of Cl(Rn).

It is convenient to have some examples of modules over Clifford algebras. Such module is
given by a vector space V together with a map

U ⊗ V → V, u⊗ v 7→ u · v,

which satisfies u · (u · v) = −|u|2v for all u ∈ U and v ∈ V . An example of a Cl(U)–module is
V = ΛU∗, where the Cl(U)–module structure is given by the map

u⊗ ϕ 7→ ıuϕ− 〈u, ·〉 ∧ ϕ. (110)

Let V be a quaternionic vector space. Then the quaternionic multiplication gives rise to the
map ImH ⊗ V → V , h ⊗ v 7→ h · v, which satisfies h · (h · v) = −hh̄v = −|h|2v. Thus,

3We adopt the common convention Sp±(1) = Sp(1). The significance of the subscripts “±” will be clear below.
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any quaternionic vector space is a Cl(R3)–module. In particular, the fundamental representation
/S ∼= H of Sp(1) ∼= Spin(3) with the action given by the left multiplication is a Cl(R3)–module.

The multiplication on the right by ī endows /S with the structure of a complex Sp(1)–representation,
which is in fact also Hermitian (this is just another manifestation of the isomorphism Sp(1) ∼=
SU(2)). It is then an elementary exercise in the representation theory to show the isomorphisms

ImH⊗ C ∼= End0(/S), (111)

where the left hand side is viewed as an Sp(1)–representation via the homomorphism α and
End0(/S) denotes the subspace of traceless endomorphisms. Moreover, the real subspace ImH
can be identified with the subspace of traceless Hermitian endomorphisms.

Furthermore, for any quaternionic vector space V the space V ⊕V is aCl(R4)–module. Indeed,
the Cl(R4)–module structure is induced by the map

H⊗R (V ⊕ V )→ V ⊕ V, h⊗ (v1, v2) 7→ (hv2,−h̄v1) =

(
0 h
−h̄ 0

)(
v1

v2

)
. (112)

In particular, the Sp+(1) × Sp−(1)–representation /S
+ ⊕ /S

− is a Cl(R4)–module. Here, as the
notation suggests, /S± is the fundamental representation of Sp±(1).

Just like in the case of dimension three, we have an isomorphism of Spin(4)–representations

H⊗ C ∼= Hom(/S
+

; /S
−

),

where the left hand side is viewed as a Spin(4)–representation via the homomorphism β.

4.2 Dirac operators
Let M be a Riemannian oriented manifold of dimension n. The tautological action of SO(n) on
Rn extends to an action on Cl(Rn) so that we can construct the associated bundle

Cl(M) := FrSO×SO(n)Cl(Rn).

This can be thought of as the bundle, whose fiber at a point m ∈ M is Cl(TmM) ∼= Cl(T ∗mM).
Notice that the Levi–Civita connection yields a connection on Cl(M). This is denoted by the same
symbol ∇LC .

Let E →M be a bundle of Cl(M)–modules, i.e., there is a morphism of vector bundles

Cl : TM ⊗ E → E, (v, e) 7→ v · e,

such that v · (v · e) = −|v|2e. Then E is called a Dirac bundle if it is equipped with an Euclidean
scalar product and a connection∇ such that the following conditions hold:

• ∇ is Euclidean;

• 〈v · e1, v · e2〉 = |v|2〈e1, e2〉 for any v ∈ TmM and e1, e2 ∈ Em;

• ∇(ϕ · s) = (∇LCϕ) · s+ ϕ · ∇s for any ϕ ∈ Γ(Cl(M)) and s ∈ Γ(E).
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Definition 113. If E is a Dirac bundle, the operator

D : Γ(E)
∇−−→ Γ(T ∗M ⊗ E)

Cl−−→ Γ(E)

is called the Dirac operator of E.

In other words, if e1, . . . , en is a local orthonormal oriented frame of TM , then

D s =
n∑
i=1

ei · ∇eis

Example 114. The bundle ΛT ∗M = ⊕nk=0ΛkT ∗M has a natural structure of a Dirac bundle,
where the Clifford multiplication is given by (110). The corresponding Dirac operator equals
d + d∗ [LM89, Thm 5.12], where d∗ is the formal adjoint of d, see Section 5.3.2 below for more
details.

Exercise 115. Show that the Dirac operator on a closed manifold is formally self-adjoint, i.e., for
any s1, s2 ∈ Γ(E) we have ∫

M

〈D s1, s2〉 =

∫
M

〈s1, D s2〉.

4.3 Spin and Spinc structures
Let FrSO →M be the principal bundle of orthonormal oriented frames of M .

Definition 116. M is said to be spinnable, if there is a principal Spin(n) bundle P equipped with
a Spin(n)–equivariant map τ : P → FrSO, which covers the identity map on M and is a fiberwise
double covering. Here Spin(n) acts on FrSO via the homomorphism Spin(n)→ SO(n).

A choice of a bundle P as above is called a spin structure. A manifold equipped with a spin
structure is called a spin manifold.

For a given M a spin structure may or may not exist. If M is spinnable, there may be many
non-equivalent spin structures. The questions on existence and classification of spin structures may
be completely answered in terms of the Stiefel–Whitney classes [LM89]. However, I will not go
into the details here. For the remaining part of this section I assume throughout that M is spin.

Let ω ∈ Ω1
(
FrSO; so(n)

)
be the connection 1-form of the Levi–Civita connection. Since the

homomorphism Spin(n) → SO(n) is a local diffeomorphism, we have an isomorphism of Lie
algebras spin(n) ∼= so(n). Hence, τ ∗ω ∈ Ω1

(
P ; spin(n)

)
is a connection on P . Slightly abusing

terminology, this is still called the Levi–Civita connection.

For any n ≥ 3 there is a unique complex representation ρ : Spin(n) → End(/S) distinguished
by the property that it extends to a complex irreducible representation of Cl(Rn). Notice that this
means neither that /S is a unique Spin(n)–representation, nor that /S is an irreducible Spin(n)–
representation. For example, for n = 3 this representation coincides with the fundamental repres-
entation of Sp(1) = Spin(3). For n = 4 we have /S = /S

+ ⊕ /S
−, see (112).

If M is spin, we can construct the spinor bundle

/S := P ×Spin(n), ρ /S.
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Here, as it is quite common, we use the same notation both for the representation and the associated
vector bundle.

Since ρ extends to a representation of Cl(Rn), the spinor bundle is in fact a bundle of Cl(M)–
modules. Hence, the construction of Section 4.2 yields the spin Dirac operator

/D : Γ(/S)→ Γ(/S).

Remark 117. Recall that in the case dimM = 4, the spinor bundle splits: /S = /S
+⊕ /S−. By (112),

the Clifford multiplication with 1–forms changes the chirality, i.e., for any ω ∈ Ω1(M) we have
ω· : /S± → /S

∓. Hence,

/D =

(
0 /D

−

/D
+

0

)
, where /D

±
: Γ(/S

±
)→ Γ(/S

∓
).

The following two variations of this construction are frequently used. First, let P be a principal
G–bundle equipped with a connection A and let τ : G→ U(n) be a unitary representation of G so
that we have the associated bundle E = P ×G,τ Cn, which is Hermitian. Then the twisted spinor
bundle /S ⊗ E is also a Dirac bundle so that we have a twisted Dirac operator

/DA : Γ(/S ⊗ E)→ Γ(/S ⊗ E).

Example 118. Let us assume that dimM = 3 for the sake of definiteness. Choose E = /S, which
is equipped with the Levi–Civita connection. Then we have

/S ⊗ /S = Sym2(/S)⊕ Λ2/S ∼= T ∗CM ⊕ C,

cf. (111). Hence, the twisted spinors can be identified with the complexification of odd forms. Of
course, the Hodge ∗-operator yields and isomorphism between odd and even forms so that we can
identify the twisted spinors with even forms too. We already have seen above a Dirac operator
acting on forms, namely

d+ d∗ : Ωodd(M)→ Ωeven(M),

cf. Example 114. One can show that the complexification of d + d∗ coincides with the twisted
Dirac operator on Γ(/S ⊗ /S).

Exercise 119. The Clifford multiplication combined with the map adP → End(E) yields the
‘twisted’ Clifford multiplication

T ∗M ⊗ adP → End(/S)⊗ End(E) ∼= End(/S ⊗ E).

Show that for a ∈ Ω1(adP ) the following holds:

/DA+aψ = /DAψ + a · ψ.

Let me explain the second variation, which in essence is not really much different from the first
one, however the details are somewhat involved.

Thus, by the construction of Spin(n) we have the exact sequence

{1} → {±1} → Spin(n)→ SO(n)→ {1}.
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Moreover, one can show that the kernel {±1} lies in the center of Spin(n). This is clear anyway in
our main cases of interest, namely for n = 3 and n = 4. Denote

Spinc(n) := Spin(n)× U(1)/± 1,

where {±1} is embedded diagonally. Notice that both Spin(n) and U(1) are subgroups of Spinc(n)
and U(1) lies in fact in the center of Spinc(n).

Furthermore, we have the following exact sequences:

{1} → U(1)→ Spinc(n)
ρ0−−→ Spin(n)/± 1 = SO(n)→ {1},

{1} → Spin(n)→ Spinc(n)
ρdet−−−→ U(1)/± 1 ∼= U(1)→ {1}.

These in turn give rise to the exact sequence

{1} → {±1} → Spinc(n)
(ρ0, ρdet)−−−−−−→ SO(n)× U(1)→ {1}, (120)

which shows that Spinc(n) is a double covering of SO(n)× U(1).

Example 121.

(a) For n = 3 we have Spinc(3) = SU(2) × U(1)/ ± 1 ∼= U(2). In particular, ρdet(A) = detA
and the sequence (120) has the following form

{1} →
{
±1
}
→ U(2)→ SO(3)× U(1)→ {1},

where the homomorphism U(2)→ SO(3) = PU(2) is the natural projection.

(b) For n = 4 we have

Spinc(4) =
((

SU(2)× SU(2)
)
× U(1)

)
/± 1

=
{

(A+, A−) ∈ U(2)× U(2) | detA+ = detA−
}
.

In particular, ρdet(A+, A−) = detA+ = detA−.

Notice that in this case we also have the homomorphisms

ρ± : Spinc(4)→ U(2), ρ±(A+, A−) = A±.

Definition 122. A spinc structure on M is a principal Spinc(n)–bundle P → M equipped with a
Spinc(n)–equivariant map P → FrSO which induces an isomorphism P/U(1) ∼= FrSO.

Just like in the case of spin structures, spinc structures may or may not exist. If a spinc structure
exists, it is rarely unique. It is also clear that if M is spin, then M is also spinc.

It turns out that four–manifolds are somewhat special as the following result shows.

Proposition 123. Any closed oriented four–manifold admits a spinc structure. �
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A proof of this claim can be found for example in [Mor96, Lem. 3.1.2]. Notice however, that
there are closed four–manifolds that are not spin. In dimension three the situation is different: Any
closed oriented three–manifold is spin [GS99a, Rem. 1.4.27], and hence also spinc.

With these preliminaries at hand, letM be a manifold equipped with a spinc structure P . Define
the determinant line bundle

Ldet := P ×ρdet C.
This is clearly a Hermitian line bundle and its U(1)–structure is

Pdet := P/Spin(n).

By (120), we have a double cover map

τ : P → P/{±1} = FrSO×MPdet.

Hence, if A is a connection on Pdet, then τ ∗(ω + A) ∈ Ω1
(
P ; spinc(n)

)
, where we have used the

isomorphism spinc(n) ∼= so(n)⊕u(1). Thus, the choice of a unitary connection on the determinant
line bundle together with the Levi–Civita connection determines a connection on the spinc bundle.

Let /S be the distinguished representation of Spin(n). This can be clearly extended to a Spinc(n)–
representation, which is still denoted by /S: [g, z] · s = zρ(g) s. This in turn yields the spinc spinor
bundle

/S := P ×Spinc(n) /S,

which is a Dirac bundle. Hence, we obtain the spinc Dirac operator /DA : Γ(/S)→ Γ(/S).

Example 124. AssumeM is spin and pick a spin structure PSpin. Pick also a principal U(1)–bundle
P0. Then

P := PSpin ×M P0/± 1

is a principal
(
Spin(n) × U(1)

)
/ ± 1 = Spinc(n) bundle. In this case the spinc spinor bundle is

just the twisted spinor bundle /S ⊗ L0, where /S is the pure spinor bundle and L0 := P0 ×U(1) C
is the associated complex line bundle. Likewise, the spinc Dirac operator is just the twisted Dirac
operator.

Remark 125. In some sense, any spinc spinor bundle can be thought of as the twisted spinor bundle
just like in the example above. The problem is that in general neither /S nor L0 is globally well-
defined, however their product /S ⊗ L0 is well-defined. The notion of a spinc structure is just a
convenient way to make this ‘definition’ precise.

Exercise 126. For a ∈ Ω1(M ;Ri) prove that

/DA+aψ = /DAψ +
1

2
a · ψ. (127)

The coefficient 1
2

in (127) can be explained as follows: Think of the spinc spinor bundle as
/S ⊗ L0 just like in Remark 125. Then the determinant line bundle is Λ2(/S ⊗ L0) = L2

0 so that
A0 ∈ A(L0) induces some connection A on L2

0. Then A0 + a0 corresponds to A+ 2 a0.
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4.3.1 On the classification of spinc structures

Let P be a spinc structure with the spinor bundle /S. If L is any Hermitian line bundle, then /S⊗L is
a spinc spinor bundle corresponding to a spinc structure PL. This defines an action ofH2(M ; Z) on
the set S = S(M) of all spinc structures on M . This action can be shown to be free and transitive,
hence S(M) can be identified with H2(M ; Z), however, such an identification is not canonical.

For example, let M be spin and let /S be the pure spinor bundle. The spin structure of M can be
also viewed as a distinguished spinc structure so that S(M) has a preferred point, the origin. This
choice fixes an isomorphism S(M) ∼= H2(M ; Z).

4.4 The Weitzenböck formula
For a function u : R4 → H the operators

/D
+

(u) =
∂u

∂x0

+ i
∂u

∂x1

+ j
∂u

∂x2

+ k
∂u

∂x3

,

/D
−

(u) = − ∂u

∂x0

+ i
∂u

∂x1

+ j
∂u

∂x2

+ k
∂u

∂x3

can be thought of as four-dimensional analogues of the ∂̄ = 1
2
( ∂
∂x

+ i ∂
∂y

) and ∂ = 1
2
( ∂
∂x
− i ∂

∂y
)

operators for complex–valued functions of one complex variable z = x + yi respectively. In
fact, tracing through the construction, it is easy to see that for the flat four–manifold R4 the Dirac
operator can be written as follows

/D =

(
0 /D

−

/D
+

0

)
,

cf. (112). Here I use the fact, that the spinor bundle of R4 is (canonically) the product bundle. A
straightforward computation yields

/D
2

=

(
/D
− /D

+
0

0 /D
+ /D

−

)
= ∆, (128)

where ∆ = −∑3
i=0

∂2

∂x2i
is the Laplacian. This is usually phrased as “the Dirac operator is the

square root of the Laplacian”.

Remark 129. The Dirac operator on R2 has the form(
0 2 ∂

∂z

−2 ∂
∂z̄

0

)
: C∞(R2; C2)→ C∞(R2; C2)

and squares to the Laplacian just like in dimension four. Notice, however, that the case of dimension
two requires a special treatment due to the fact that π1(SO(2)) ∼= Z, which was one of the reasons
I assumed n ≥ 3 in this section.

On R3 the spinor bundle can be identified with the product bundle H so that the corresponding
Dirac operator is

/D(u) = i
∂

∂x1

+ j
∂

∂x2

+ k
∂

∂x3

,

which also squares to the Laplacian.
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On general Riemannian manifolds the relation /D
2

= ∆ still holds up to a zero order operator.
This is known as the Weitzenböck formula, which I describe next.

Thus, given an Euclidean vector bundle E with a connection ∇ the connection Laplacian is
defined by

∇∗∇ : Γ(E)
∇−−→ Ω1(E)

∇∗=−∗d∇∗−−−−−−−→ Γ(E). (130)

Exercise 131.

(a) Let (e1, . . . , en) be a local orthonormal frame of TM over an open subset of M . Show that
the connection Laplacian can be expressed as follows

∇∗∇s = −
n∑
i=1

(
∇ei∇eis−∇∇eiei s

)
,

where∇ei means the Levi–Civita connection applied to ei.

(b) Prove that the connection Laplacian is formally self-adjoint.

(c) In the case M is closed, prove the identity 〈∇∗∇s, s〉L2 = ‖∇s‖2
L2 .

Assume thatE is a Dirac bundle and letR ∈ Ω2(End(E)) be the curvature 2-form of the corres-
ponding connection ∇. Using the Clifford multiplication, we obtain a homomorphism Λ2T ∗M ⊗
End(E) → End(E), which maps R to an endomorphism R. In a local frame (ei) of TM this can
be expressed as follows

R(s) :=
1

2

n∑
i,j=1

ei · ej ·Rei,ej(s).

Theorem 132 (Weitzenböck formula). Let /D be the Dirac operator for the Dirac bundle E. Then
the following holds:

/D
2

= ∇∗∇+ R.

Proof. Pick a point m ∈ M and a local frame (ei) such that ∇eiej vanishes at m. Then at m we
have the following:

/D
2
s =

n∑
i=1

ei · ∇ei

( n∑
j=1

ej · ∇ejs
)

=
n∑

i,j=1

ei · ej · ∇ei∇ejs

=
n∑
i=1

ei · ei · ∇ei∇eis+
1

2

∑
i 6=j

ei · ej ·
(
∇ei∇ej −∇ej∇ei

)
s

= ∇∗∇s+ Rs.

�

In the case of the spinc spinor bundle, a straightforward computation yields the following co-
rollary, whose proof is left as an exercise.
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Corollary 133. LetA be a Hermitian connection on the determinant line bundle with the curvature
form FA. Then the spinc Dirac operator satisfies:

/D
2
ψ = ∇∗∇ψ +

1

4
sg ψ +

1

2
FA · ψ,

where sg is the scalar curvature of the background metric g. �

In particular, in the case M is spin and /S is the pure spinor bundle, we have

/D
2
ψ = ∇∗∇ψ +

1

4
sg ψ.

This implies, for example, that for a metric with positive scalar curvature the space of harmonic
spinors ker /D is trivial.

Recall that in dimension four, the spinor bundle splits: /S = /S
+ ⊕ /S

−. With respect to this
splitting the Dirac operator takes the form

/D =

(
0 /D

−

/D
+

0

)
,

which we already have seen above in the case of the flat space. By Corollary 133 for ψ ∈ Γ(/S
+

)
we obtain

/D
− /D

+
ψ = ( /D

+
)∗ /D

+
ψ = ∇∗∇ψ +

1

4
sg ψ +

1

2
F+
A · ψ.

Here we used the fact that anti-self-dual 2-forms act trivially on /S+.

5 Linear elliptic operators

5.1 Sobolev spaces
Consider the following classical boundary value problem in the theory of PDEs: Let Ω ⊂ Rn be
a bounded domain with a smooth boundary ∂Ω. Does there exist a function u ∈ C2(Ω) ∩ C0(Ω̄)
such that

∆u = 0 in Ω and u|∂Ω = ϕ, (134)

where ϕ is a given function on ∂Ω?
Consider the energy functional

E(u) :=
1

2

∫
Ω

|∇u(x)|2 dx,

where dx denotes the standard volume form on Rn. Assume there exists an absolute minimum of
E, i.e., a function u ∈ C2(Ω) ∩ C0(Ω̄) such that

E(u) = inf
{
E(v) | v ∈ C2(Ω) ∩ C0(Ω̄), v|∂Ω = ϕ

}
.
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A straightforward computation using integration by parts yields

0 =
d

dt

∣∣
t=0
E(u+ tw) =

∫
Ω

w∆u dx

for all w such that w|∂Ω = 0. This implies that u is harmonic in Ω. Thus, we can find a solution
of (134) if we can prove that the energy functional attains its minimum.

Hence, a strategy for proving the existence of solutions of (134) may be the following: Pick
a sequence uk such that E(uk) converges to the infimum of the energy functional and prove that
uk converges to a limit u possibly after extracting a subsequence. This strategy does work indeed,
however, it requires certain technology known as the theory of Sobolev spaces, which turned out
to be very useful in gauge theory as well. What follows below is a crash course in Sobolev spaces.
An interested reader should consult more specialized literature for details.

First recall that the space L2(Rn) of square integrable functions equipped with a scalar product

〈u, v〉L2 :=

∫
Rn
uv dx

is a Hilbert space, i.e., L2(Rn) is complete with respect to the norm ‖u‖L2 :=
√
〈u, u〉. This space

can be viewed as a completion of the space C∞0 (Rn) of all smooth functions with compact support
with respect to the norm ‖ · ‖L2 .

This definition admits a number of variations, which will be of use below. First, we can pick
any p > 1 and put

‖u‖Lp :=
(
|u(x)|p dx

) 1
p
,

where u ∈ C∞0 (Rn). The completion of C∞0 (Rn) with respect to ‖ · ‖Lp is then the Banach space
Lp(Rn).

Secondly, we can also consider

‖u‖Wk,p :=
( k∑
i=0

‖∇iu‖Lp
) 1
p
.

The completion of C∞0 (Rn) with respect to this norm is denoted by W k,p(Rn). These spaces are
called Sobolev spaces.

Remark 135. Many different and inconsistent notations are in use for Sobolev spaces. For example,
sometimes Lsr may meanW r,s and sometimesW s,r. Of all notations being used for Sobolev spaces,
the symbol W k,p seems to be most consistently used, hence I opted for this one.

Third, we can replace the domain Rn by any open subset of Rn or, even more generally, by
a Riemannian manifold M . The corresponding spaces will be denoted by W k,p(M). Here ∇u
should be understood as the differential of u, that is ∇u ∈ Γ(T ∗M). fixing a connection on T ∗M ,
for example the Levi–Civita one, ∇u can be differentiated again. This clarifies the meaning of
∇2u ∈ Γ(T ∗M ⊗ T ∗M) and so on up to the dependence of the space W k,p(M) on the choice of
connection.

This naturally leads us to one more variation of the definitions above. Pick a vector bundle
E → M and connections ∇E ∈ A(E),∇M ∈ A(T ∗M). This yields a connection on T ∗M ⊗ E

44



Introduction to Gauge Theory

so that the higher derivatives ∇i(∇s) are well defined for any s ∈ Γ(E). This yields the Sobolev
spaces W k,p(M ; E) in the same manner as above. While the norm ‖ · ‖Wk,p does depend on ∇E

and ∇M , different choices yield equivalent norms so that the resulting topology is independent of
the choices made.

With this understood, for any p > 1 we have the sequence of inclusions

Lp(M ; E) = W 0,p(M ; E) ⊃ W 1,p(M ; E) ⊃ W 2,p(M ; E) ⊃ . . .

Relations between all these spaces is given by the following theorem, which is of fundamental
importance in the theory of PDEs.

Theorem 136. Let M be a compact manifold.

(i) If s ∈ W k,p(M ; E), then s ∈ Wm,q(M ; E) provided

k − n

p
≥ m− n

q
and k ≥ m,

where n = dimM , and there is a constant C independent of s such that ‖s‖Wm,s ≤
C‖s‖Wk,p . In other words, the natural embedding

j : W k,p(M ; E) ⊂ Wm,q(M ; E)

is continuous.

(ii) j is a compact operator provided

k − n

p
> m− n

q
and k > m. (137)

This means that any sequence bounded in W k,p has a subsequence, which converges inWm,q

provided (137) holds.

(iii) We have a natural continuous embedding

W k,p(M ; E) ⊂ Cr(M ; E)

provided k − n
p
> r. In particular, if s ∈ W k,p(M ; E) for some fixed p and for all k ≥ 0,

then s ∈ C∞(M ; E).

(iv) (a) In the case kp > n the space W k,p(M ; R) is an algebra.

(b) In the case kp < n, we have a bounded map

W k1,p1 ⊗W k2,p2 → W k,p, provided k1 −
n

p1

+ k2 −
n

p2

≥ k − n

p
. �

Remark 138. Although the proof of this theorem goes beyond the goals of these notes, it may
be instructive to see ‘the spirit of the proof’ in one particular case. Thus, let M = S1 and u ∈
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C∞(S1; R). Denote ū := 1
2π

∫
u(θ) dθ and u0(θ) := u(θ) − ū. By the mean value theorem, there

is θ0 ∈ S1 such that u0(θ0) = 0. Hence, for any θ ∈ S1 we have

|u0(θ)| =
∣∣∣∫ θ

θ0

u′0(ϕ) dϕ
∣∣∣ ≤

√∫ θ

θ0

|u′0(ϕ)|2 dϕ
√∫ θ

θ0

12 dϕ ≤
√

2π ‖u0‖W 1,2 , (139)

where the first inequality follows by the the Cauchy–Schwarz inequality. This yields the estimate
‖u‖C0 ≤ C‖u‖W 1,2 , which in turn shows that there is a continuous embeddingW 1,2(S1) ⊂ C0(S1).

Furthermore, by tracing through (139) it is easy to see that

|u(θ1)− u(θ2)| ≤
√

2π ‖u‖W 1,2 dist(θ1, θ2)
1
2 .

Hence, if uk is any sequence bounded in W 1,2(S1), then this sequence consists of uniformly
bounded and equicontinuous functions on S1. By the Arzela–Ascoli theorem, this sequence has
a convergent subsequence in C0(S1), thus proving the compactness of the embedding W 1,2(S1) ⊂
Lp(S1) for any p.

5.2 Elliptic operators

A map L : C∞(Ω; Rr) → C∞(Ω; Rs), where Ω ⊂ Rn is an open subset, is said to be a linear
differential operator of order ` if L can be expressed in the form

Lf =
∑
|α|≤`

Aα(x)
∂|a|

∂xα
f, (140)

where α = (α1, . . . , αn), αi ∈ Z≥0, is a multi-index, |α| := ∑αi, andAα ∈ C∞
(
Ω; Hom(Rr; Rs)

)
.

For example, in the case of operator of order ` = 2 acting on functions of two variables, we have

Lf = A20
∂2

∂x2
1

+ A11
∂2

∂x1∂x2

+ A02
∂2

∂x2
2

+ A10
∂

∂x1

+ A01
∂

∂x2

+ A00,

where Aij are smooth functions on Ω.
It is intuitively clear that the highest order terms determine some essential properties ofL. Thus,

we say that

σL(ξ) :=
∑
|α|=`

Aα(x)ξα =
∑
|α|=`

Aα(x)ξα1
1 · . . . · ξαnn where ξ ∈ (Rn)∗ ∼= Rn

is the principal symbol of L. The symbol can be conveniently viewed as a map Ω × Rn →
Hom(Rr; Rs), which is polynomial in the ξ-variable.

Definition 141. A linear differential operator L is called elliptic, if for all x ∈ Ω and all ξ ∈
Rn, ξ 6= 0, we have: σL(ξ) is an invertible homomorphism.

Notice in particular that we must require r = s to have an elliptic operator.
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Example 142. For the (non-negative) Laplacian on Rn acting on functions we have

σ∆(ξ) = −
n∑
i=1

ξ2
i = −|ξ|2.

Hence, ∆ is an elliptic operator. This is in fact a prototypical example of an elliptic operator.

The concepts above make sense for a more general setting of vector bundles. To spell some
details, let E and F be vector bundles over a manifold M of rank r and s respectively. We say
that a map L : Γ(E) → Γ(F ) is a linear differential operator of order `, if for any choice of local
coordinates on Ω ⊂ M and any trivializations of E|Ω and F |Ω the map L can be represented as
in (140), where the coefficients Aα are allowed to depend on the choices made.

Let π : T ∗M → M be the natural projection. A straightforward computation shows that the
symbol makes sense as a section of Hom(π∗E; π∗F ). Then L is said to be elliptic if the symbol is
a pointwise invertible homomorphism away from the zero section of T ∗M .

Example 143. Let M be an oriented Riemannian manifold. Consider the Laplace–Beltrami oper-
ator acting on the space of functions on M :

∆f = − ∗ d ∗ df,

where ∗ : ΛkT ∗M → Λn−kT ∗M is the Hodge operator.
Choose local coordinates (x1, . . . , xn) and write g = gij dxi ⊗ dxj , |g| = det(gij). Denoting

by (gij) the inverse matrix, a straightforward computation yields the local form of the Laplace–
Beltrami operator:

∆f = −|g|− 1
2

n∑
i,j=1

∂

dxi

(
|g| 12 gij ∂f

∂xj

)
From this it is easy to compute the symbol. Indeed, if ξ =

∑
ξi dxi, then

σ∆(ξ) = −|g|− 1
2

n∑
i,j=1

ξi|g|
1
2 gijξj = −|ξ|2,

where | · | denotes the norm on T ∗X . In particular, the Laplace–Beltrami operator is elliptic.

Example 144. For any Dirac bundle E the corresponding Dirac operator D : Γ(E) → Γ(E) is
elliptic. Indeed, it is easy to see that the principal symbol σξ(D) is just the Clifford multiplication
with ξ. This is invertible with the inverse given by the Clifford multiplication with |ξ|−2ξ.

In dimension four (and in fact in any even dimension) the chiral Dirac operators /D
± are also

elliptic.

Any linear elliptic operator L : C∞(M ; E) → C∞(M ; F ) of order ` extends as a bounded
linear map

L : W k+`,p(M ; E)→ W k,p(M ; F ) (145)

for any k ≥ 0 and any p > 1.
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Theorem 146 (Elliptic estimate). Let M be a compact manifold. For any linear elliptic op-
erator L there is a constant C > 0 with the following property: If Ls ∈ W k,p(M ; F ), then
s ∈ W k+`,p(M ; E) and

‖s‖Wk+`,p ≤ C
(
‖Ls‖Wk,p + ‖s‖Lp

)
.

Here C depends on k and p but not on s. �

Assume that bothE andF are equipped with an euclidean structure. An operatorL∗ : C∞(M ; F )→
C∞(M ; E) is said to be formal adjoint of L if

〈Ls, t〉L2 = 〈s, L∗t〉L2 (147)

holds for any s ∈ C∞(M ; E) and any t ∈ C∞(M ; F ). One can show that L∗ exists and is a linear
differential operator of order `. Moreover, L is elliptic if and only if L∗ is elliptic.

One of the most important results in the theory of elliptic differential operators is the following.

Theorem 148 (Fredholm alternative). Let L be elliptic, M compact, and t ∈ C∞(M ; F ). The
equation

Ls = t

has a smooth solution if and only if t ∈ kerL∗. �

Remark 149. A corollary of Theorem 148 can be formulated as follows. Under the hypotheses of
Theorem 148 one and only one of the following statements hold:

(i) The homogeneous equation L∗s = 0 has a non-trivial solution.

(ii) The inhomogeneous equation Ls = t has a unique solution for any smooth t.

This form of Theorem 148 is widely used in the theory of PDEs.

Definition 150. A bounded linear mapB : X → Y between two Banach spaces is called Fredholm,
if the following conditions hold:

(a) dim kerB <∞;

(b) ImB is a closed subspace of Y ;

(c) cokerB := Y/ ImB <∞.

If B is Fredholm, the integer

indexB := dim kerB − dim cokerB

is called the index of B.

Remark 151. One can show that (b) follows the other two conditions. Nevertheless, it will be useful
to know that ImB is closed, even if one does not necessarily need to check this.

For example, any linear map between finite dimensional spaces is Fredholm and its index equals
dimY − dimX . In fact, Fredholm operators resemble linear maps between finite dimensional
vector spaces well known from the basic course of linear algebra and this largely explains the
importance of Fredholm operators for us.
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Exercise 152. Let B0 be a Fredholm operator. Show that there is an ε > 0 such that any bounded
operator B with

‖B −B0‖ < ε

is also Fredholm. Here ‖ · ‖means the operator norm in the space of bounded linear maps X → Y .
Prove also that indexB = indexB0.

Theorem 153. For any elliptic operator L of order ` > 0 on a compact manifold M , (145) is a
Fredholm operator. Moreover, kerL consists of smooth sections only.

Sketch of proof. If s ∈ W `,p is in the kernel of L, then s ∈ W k,p for any k ≥ 0 by Theorem 146.
Hence, s is smooth by Theorem 136.

Let sj ∈ W `,p be any sequence such that Lsj = 0 and ‖sj‖W `,p ≤ 1. Then the sequence
‖sj‖W `+1,p is bounded by Theorem 146. Hence, by Theorem 136 after passing to a subsequence if
necessary, sj converges to some limit s∞ in W `,p. Since L : W `,p → Lp is bounded, s∞ ∈ kerL.
In other words, the unit ball in kerL is compact with respect to the W `,p norm. This implies that
kerL is finite dimensional.

Next, let us assume that p = 2, which simplifies the discussion somewhat. Denote V :=(
ImL : W k+`,2 → W k,2

)⊥, where the orthogonal complement is understood in the sense of L2–
scalar product. One can show that all sections lying in V are in fact in W `,p. Then (147) implies
that V = kerL∗. This in turn yields that V is finite dimensional (and consists of smooth sections
only). �

5.3 Elliptic complexes
Fix a manifold M and a sequence of vector bundles E1, . . . , Ek, which I assume to be finite for the
simplicity of exposition. Let

0→ Γ(E1)
L1−−→ Γ(E2)

L2−−→ . . .
Lk−1−−−−→ Γ(Ek)→ 0 (154)

be a sequence of differential operators such that Lj ◦ Lj−1 = 0 for all integer j ∈ [1, k − 1], i.e.,
(154) is a complex. In particular, we can define the corresponding cohomology groups

Hj(E) := kerLj/ imLj−1,

where j ∈ {1, 2, . . . , k}.
Associated to (154) is the sequence of principal symbols:

0→ π∗E1

σL1−−−→ π∗E2

σL2−−−→ π∗E3

σL3−−−→ . . .
σLk−1−−−−→ π∗Ek → 0.

If this is exact on the complement of the zero section, (154) is called an elliptic complex. For
example, a very short complex 0→ Γ(E)

L−→ Γ(F )→ 0 is elliptic if and only if L is elliptic.
With these preliminaries at hand, we can construct the associated Laplacians:

∆ = ∆j : Γ(Ej)→ Γ(Ej), ∆j = L∗jLj + Lj−1L
∗
j−1.

Exercise 155. Prove that each ∆j is an elliptic operator provided the initial complex is elliptic.
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In the sequel, I will drop the index of the differentials Li to simplify the notations so that all
maps in (154) are denoted by the same symbol L. I assume also that all differentials L are of order
1, since only this case will show up in these notes, but operators of other orders could be considered
as well. Also, I assume that all bundles Ei are equipped with an Euclidean structure.

Denote
Hj(E) :=

{
s ∈ Γ(Ej) | ∆s = 0

}
.

Elements ofHj(E) are called harmonic sections.

Theorem 156. For an elliptic complex on a compact manifold the following holds:

(i) EachHj(E) is a finite dimensional vector space.

(ii) s ∈ Hj(E) if and only if Ls = 0 and L∗s = 0.

(iii) The natural homomorphism

Hj(E)→ Hj(E), s 7→ [s]

is an isomorphism.

Proof. The first statement follows from the ellipticity of ∆. The second statement follows easily
from the equality

〈∆s, s〉L2 =
〈
(LL∗ + L∗L)s, s

〉
L2 = ‖L∗s‖2

L2 + ‖Ls‖2
L2 .

It remains to prove the last claim. Thus pick any s0 ∈ Γ(Ej) such that Ls0 = 0. We wish to
show that the equation

(L+ L∗)
(
s0 + Lt

)
= 0

has a solution t ∈ Γ(Ej−1). Notice that this equation is equivalent to

L∗Lt = −L∗s0. (157)

Consider instead the equation ∆t = −L∗s0, whose right hand side is clearly L2-orthogonal to
ker ∆∗ = ker ∆. Hence, by Theorem 148 there is a unique solution of ∆t = −L∗s0, which can be
rewritten as

L(L∗t) + L∗(s0 + Lt) = 0.

A moment’s thought shows that ImL is L2-orthogonal to ImL∗. Hence, t is a solution of (157) in
fact. This finishes the proof of the existence part.

The uniqueness is easy to show: If s1, s2 ∈ Hj(E) are such that s1 − s2 = Lt for some
t ∈ Γ(Ej−1), then

‖Lt‖2
L2 = 〈L∗Lt, t〉L2 = 〈L∗(s1 − s2), t〉L2 = 0.

�

A refinement of the argument in the proof of the above theorem shows that in fact we have the
following decomposition

Γ(Ej) = ImL⊕Hj(E)⊕ ImL∗, (158)

which is L2–orthogonal. Details can be found for example in [Wel80].
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Exercise 159. Show that the short complex

0→ Γ(E1)
L1−−→ Γ(E2)

L2−−→ Γ(E3)→ 0

is elliptic if and only if the operator

(L2, L
∗
1) : Γ(E2)→ Γ(E3 ⊕ E1)

is elliptic.

5.3.1 A gauge-theoretic interpretation

The cohomology group Hj(E) is an example of a linear gauge–theoretic moduli space, cf. Sec-
tion 1. Let me spell some details. The manifold4 B = Γ(Ej) carries an action of the additive group
G := Γ(Ej−1) by translations: (s, t) 7→ s + Lt. If Γ(Ej+1) is viewed as a trivial G–representation,
L : Γ(Ej) → Γ(Ej+1) is a G-equivariant map, which in this particular case just means that L is
G-invariant. The action of the gauge group on L−1(0) is not free in general, however kerL acts
trivially so that the corresponding ‘moduli space’ L−1(0)/G = Hj(E) is a finite dimensional man-
ifold (a vector space, in fact) provided the complex is elliptic and the base manifold is compact.
This explains our interest in the theory of elliptic operators.

Notice, however, that because of the linear setting we can not expect that the ‘moduli space’
Hj(E) will be compact. The reason is that Hj(E) inherits the action of R>0 by dilations and if we
take the quotient of Hj \ {0} by this action the resulting space is compact. Thus, in this setting
dimHj(E) <∞ is a suitable replacement for the compactness of the moduli space.

One more important feature we have seen is the so called gauge fixing. Namely, we have shown
that for each point s ∈ L−1(0) there is a unique representative h(s) in the ‘gauge-equivalence class
of s’ such that h(s) is harmonic. Moreover, the map

L−1(0)→ Hj(E), s 7→ h(s)

induces a diffeomorphism L−1(0)/G → Hj(E).
Furthermore, an isomorphism class of a finite dimensional vector space is determined by a

unique non-positive integer, namely its dimension. Hence, bj(E) := dimHj(E) is an ‘invariant’
of E. In many cases, these invariants capture a subtle information about the underlying manifold
M .

The example of the de Rham complex in the following subsection will make these constructions
more concrete.

5.3.2 The de Rham complex

Recall that for any manifold M of dimension n we have the de Rham complex

0→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M) −→ . . . −→ Ωn(M)→ 0.

4One can consider Γ(Ej) as a Banach manifold by taking a Sobolev completion. Since this is not really important
at this point, I describe the setting in the smooth category.
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Exercise 160. Show that the de Rham complex is elliptic.

IfM is oriented and Riemannian, we have the Hodge operator ∗ : ΛjT ∗M → Λn−jT ∗M . Using
this, the formal adjoint of the exterior derivative can be expressed as

d∗ = (−1)n(j−1)+1 ∗ d ∗ : Ωj(M)→ Ωj−1(M)

so that the Hodge–de Rham Laplacian is ∆ = dd∗ + d∗d. If M is in addition compact, the space
Hj of harmonic forms of degree j is naturally isomorphic to the jth de Rham cohomology group.
Then bj(M) := dimHj is the jth Betti number of M . This is a topological invariant of M even
though in this approach a smooth structure has been used.

6 Fredholm maps

6.1 The Kuranishi model and the Sard–Smale theorem
Let X and Y be Banach manifolds.

Definition 161. A map F ∈ C∞(X; Y ) is said to be Fredholm if the differential dF is a Fredholm
linear map at each point.

Hence, for each x ∈ X the index of dxF is well defined. If X is connected, then index dxF
does not depend on x and this common value is denoted by indexF .

Fredholm maps have a lot in common with smooth maps between finite dimensional manifolds.
A manifestation of this is the following result.

Theorem 162 (Kuranishi model). Let X and Y be Banach spaces and F : X → Y a Fredholm
map. Pick a point p ∈ F−1(0) and denote X0 = ker dpF , Y0 := im dpF . Furthermore, choose
subspaces X1 ⊂ X and Y1 ⊂ Y such that

X = X0 ⊕X1 and Y = Y0 ⊕ Y1.

Then there is a diffeomorphism ϕ of a neighborhood of the origin in X onto a neighbourhood of p
such that ϕ(0) = p, a linear isomorphism T : X1 → Y0, and a smooth map f : X → Y1 such that

F ◦ ϕ(x0, x1) = Tx1 + f(x0, x1)

for all (x0, x1) ∈ X0 ⊕X1 in the neighborhood of the origin.
In particular, if f0 : X0 → Y1 denotes the restriction of f to X0, then a neighborhood of p in

F−1(0) is homeomorphic to a neighborhood of the origin in f−1
0 (0). �

Corollary 163. Assume the hypotheses of Theorem 162. Suppose also that 0 is a regular value of
F , i.e., the dpF is surjective for all p ∈ F−1(0). Then F−1(0) is a smooth manifold of dimension
indexF .

Proof. Since Im dpF = Y , we necessarily have Y1 = {0} so that f0 is a constant map. Hence,
F−1(0) is diffeomorphic to a neighborhood of the origin in X0, i.e., a manifold of dimension
dimX0 = indexF . �
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For a smooth map between finite dimensional manifolds, almost any value is regular by Sard’s
theorem [BT03, Thm. 9.5.4]. There is a generalization of this statement for an infinite dimensional
setting due to Smale. This is commonly known as the Sard–Smale theorem.

Recall that a subset A of a topological space is said to be of second category, if A can be
represented as a countable intersection of open dense subsets. If the underlying topological space
is a Banach manifold, then a subset of second category is dense.

Theorem 164. Let F be a smooth Fredholm map between paracompact Banach manifolds. Then
the set of regular values of F is of second category, in particular dense. �

Let Z ⊂ Y be a smoothly embedded finite dimensional submanifold. A map F is said to be
transverse to Z, if for any z ∈ Z and any x ∈ F−1(Z) the following holds:

Im dxF + TzZ = TzY.

In particular, F is transverse to Z = {z} is and only if z is a regular value of F . It is well-known
that the notion of transversality is a useful generalization of the notion of regular value, see for
instance [GP10].

Just as in the finite dimensional case we have the following result.

Theorem 165. Let Z ⊂ Y be a smoothly embedded finite dimensional submanifold. If F is trans-
verse to Z, then F−1(Z) is a smooth submanifold of X and

dimF−1(Z) = indexF + dimW. �

6.2 The Z/2Z degree
Recall that a map F : X → Y is called proper if preimages of compact subsets are compact.

Let F : X → Y be a proper Fredholm map between (paracompact) Banach manifolds of index
zero, where Y is connected. Then for any regular value y ∈ Y the preimage F−1(y) is a compact
manifold of dimension zero, hence a finite number of points. The number

deg2 F := #f−1(y) mod 2

is called the Z/2Z degree of F .

Theorem 166.

(i) deg2 F does not depend on the choice of the regular value y;

(ii) If F0 and F1 are homotopic within the class of proper Fredholm maps of vanishing index,
then deg2 F0 = deg2 F1.

Proof. The proof requires a number of steps.

Step 1. If F is a proper Fredholm map, then the set of regular values of F is open and dense.

First notice that the set of critical points Crit(F ) is closed. Since any proper map is closed, the
set of critical values F (Crit(F )) is closed.
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Step 2. The function
y 7→ #F−1(y) mod 2

is locally constant on the set of regular values.

Let y be a regular point of F , F−1(y) = {x1, . . . , xk}. By the inverse function theorem, there
is a neighborhood U of y and a neighborhood Vj of xj such that F : Vj → U is a diffeomorphism.
Then, for any y′ ∈ U we have #f−1(y′) = k, hence the claim.

Step 3. Let F0 and F1 be homotopic so that the homotopy is within the class of proper Fredholm
maps. Then

#F−1
0 (y) = #F−1

1 (y) mod 2 (167)

for any y, which is a regular value for both F0 and F1.

Let Ft, t ∈ [0, 1], be a homotopy. Let me assume first that, y is a regular value for F : X ×
[0, 1] → Y . Then F−1(y) is a 1-dimensional manifold with boundary such that ∂F−1(y) =
F−1

0 (y) ∪ F−1
1 (y). Hence, (167) holds.

If y is not a regular value of F , then we can choose y1 arbitrarily close to y such that y1 is a
regular value for any of F0, F1, F . The conclusion of this step follows by Step 2.

Step 4. Let x be an arbitrary point in the unit ball of a Banach space B. Then there is a diffeo-
morphism ϕ of B such that the following holds: ϕ(0) = x, ϕ is the identity map on the complement
of the Ball of radius 2, and ϕ is homotopic to the identity map relative to the complement of the
ball of radius 2.

This is really a finite dimensional statement. Indeed, choose decompositionB = V ⊕V ′, where
V is finite dimensional and x ∈ V . By [Mil97, P. 22] there is a 1-parameter family ψt : V → V of
diffeomorphisms such that ψ1(0) = x, ψ0 = idV , and ψt is identity outside the unit ball in V .

Choose a smooth function χ : R≥0 → R≥0 such that χ(0) = 1 and χ(t) = 0 for t ≥ 1. Then

ϕt(v, v
′) := ψtχ(|v′|)(v) + v′

is a family of diffeomorphisms such that ϕ0 = id and ϕ1(0, 0) = ψ1(0) = x. Clearly, for any t we
have ‖ϕt(v, v′)‖ ≤ 2 by the triangle inequality.

Let us check that ϕt is identity on the complement of the ball of radius 2. Thus, pick any (v, v′)
such that ‖v‖ + ‖v′‖ ≥ 2. Then either ‖v‖ ≥ 1 or ‖v′‖ ≥ 1. The first case is clear and the second
one we have ϕt(v, v′) = ψ0(v) + v′ = v + v′ since χ(‖v′‖) = 0 by the construction.

Step 5. If Y is a connected Banach manifold, then for any y1, y2 ∈ Y there is a diffeomorphism
ϕ ∈ Diff0(Y ) such that ϕ(y1) = y2, where Diff0(Y ) denotes the subgroup of all diffeomorphisms
homotopic to the identity.

Fix y2 ∈ Y and denote

C(y2) :=
{
y1 ∈ Y | ∃ϕ ∈ Diff0(Y ) such that ϕ(y1) = y2

}
By the previous step, C(y2) is open and non-empty, hence C(y2) = Y .

Step 6. We prove the claim of this theorem.
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Let F be as in the statement of this theorem. Pick any regular values y1 and y2 and ϕ ∈ Diff0(Y )
such that ϕ(y1) = y2. Then y2 is a common regular value for F and ϕ ◦ F . Since these maps are
homotopic, by Step 3 we have

F−1(y2) = (ϕ ◦ F )−1(y2) = F−1(y1) mod 2.

This proves (i).
Furthermore, if F : X × [0, 1] → Y is a homotopy between F0 and F1, we can choose y ∈ Y

which is a regular value for any of the following maps: F0, F1, and F . This implies the second
assertion. �

Corollary 168. Let F : X → Y be a proper Fredholm map between (paracompact) Banach mani-
folds of index zero, where Y is connected. If deg2 F 6= 0, then F is surjective. �

6.3 The parametric transversality
Given a ‘random’ point y in the target, there is no reason to expect that the preimage F−1(y) will be
a submanifold. Of course, if F is Fredholm the theorem of Sard–Smale implies that we can choose
y′ arbitrarily close to y so that F−1(y′) is a manifold indeed. In practice, however, it is not always
the case that one has a freedom to choose a point in the target. This is typically the case, which will
be considered in some detail below, if X and Y are equipped with an action of a Lie group G and
F is G–equivariant. In this case it is natural to choose y as a fixed point of the G–action on Y so
that F−1(y) inherits a G–action. This, however, restricts severely possible choices of y so that the
Sard–Smale theorem is not applicable in a straightforward manner.

One way to deal with this problem is as follows. Assume there is a connected Banach manifold
W and a smooth Fredholm map F : X ×W → Y with the following properties:

(A) For each w ∈ W the map Fw : X × {w} → Y is Fredholm;

(B) There is a point w0 ∈ W such that Fw0 = F ;

(C) y is a regular value of F ;

Typically, it is not too hard to construct a map F satisfying these properties.
Since y is a regular value, F−1(y) ⊂ X × W is a smooth Banach submanifold. We have a

natural projection π : F−1(y)→ W , which is just the restriction of the projection X ×W → W .

Lemma 169.

(i) π is a Fredholm map and indexπ = indexF ;

(ii) There is a subset W0 ⊂ W of second category such that y is a regular value for Fw for all
w ∈ W0. �

Hence, by the Sard–Smale theorem, there is w arbitrarily close to w0 such that

π−1(w) = F−1
w (y)

is a smooth submanifold of dimension indexF .

Suppose that in addition to hypotheses (A)–(B), the following holds:
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(D) Each map Fw is proper.

In what follows I will also assume that indexF = 0, since this is the setting where the degree
of a Fredholm map was defined. However, this is by no means essential.

Thus, if (A)–(D) holds, F−1
w (y) = π−1(w) consists of finitely many points. Since W is con-

nected by assumption, there is a path connecting w0 and w so that Fw is homotopic to Fw0 = F .
Hence,

deg2 F = #F−1
w (y) mod 2.

In particular, #F−1
w (y) mod 2 does not depend on w.

Of course, this conclusion is pretty much straightforward thanks to the facts we have established
in the preceding subsection. The point is that the number #F−1

w (y) mod 2 could be taken as a
definition of the degree of F thus omitting the construction of Section 6.2. For instance, this is
commonly used in the equivariant setting as discussed at the beginning of this section.

Let me describe this alternative construction of the degree of a proper Fredholm map in some
detail. Thus, choose any w1, w2 ∈ W0 so that y is a regular value for Fj := Fwj . For a fixed k ≥ 0
denote

Γ(w1, w2) :=
{
γ ∈ Ck

(
[1, 2]; W

)
| γ(1) = w1 and γ(2) = w2

}
,

which is a Banach manifold. Consider the map

F : X × Γ(w1, w2)× [1, 2]→ Y, F(x, γ, t) := F(x, γ(t)).

Clearly, y is a regular value for F too so that F−1(y) is a submanifold of X × Γ(w1, w2) × [1, 2].
Applying the Sard–Smale theorem to the restriction of the projection X × Γ(w1, w2) × [1, 2] →
Γ(w1, w2) we obtain that for a generic γ ∈ Γ(w1, w2) the subset

Mγ :=
{

(x, t) ∈ X × [1, 2] | F(x, γ, t) = y
}

is a smooth submanifold of dimension 1 and

∂Mγ = F−1
1 (y) ∪ F−1

2 (y).

Hence,
#F−1

1 (y) = #F−1
2 (y) mod 2

so that the number #F−1
w (y) mod 2 does not depend on w ∈ W0. This common value, as we

already know, is just deg2(F ).

6.4 The determinant line bundle
If X and Y are closed oriented manifolds of the same finite dimension, for any map F : X → Y
the degree can be extended to take values in Z rather than Z/2Z [GP10]. This generalization
requires orientations of the background manifolds and this tool is not readily available in infinite
dimensions. In this section I will describe how to deal with this problem.

Let P be a topological space and {Tp | p ∈ P} be a continuous family of linear Fredholm
maps. This means that the map

P → Fred(X;Y ), p 7→ Tp
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is continuous with respect to the operator norm, where X, Y are Banach spaces and Fred(X;Y )
denotes the subspace of linear Fredholm maps.

Pick a point p ∈ P . Since both the kernel and cokernel of Tp are finite dimensional, we can
construct the (real) line

detTp := Λtop kerTp ⊗ Λtop(cokerTp)
∗.

As p varies, we obtain a family of vector spaces of dimension one. It turns out that this family is
actually a locally trivial vector bundle, which is somewhat non-obvious given that the dimensions
of the kernel as well as cokernel may ‘jump’ as p varies.

To understand why this is the case, pick a point p0 and a finite dimensional subspace V ⊂ Y
transverse to ImTp0 . The linear map

Tp,V : X ⊕ V → Y, Tp,V (x, v) = Tp x+ v

is surjective for p = p0 and, hence, also for all p sufficiently close to p0. Therefore, we have the
exact sequence

0→ kerTp → kerTp,V → V → V/ ImTp ∩ V → 0 (170)

Notice that cokerTp = (ImTp + V )/ ImTp = V/ ImTp ∩ V .

Exercise 171. Let 0→ U0 → U1 → U2 → 0 be a short exact sequence of real vector spaces. Show
that the ‘inner product map’

ΛtopU0 ⊗ ΛtopU∗1 → Λtop(U1/U0)∗ = ΛtopU∗2

induces an isomorphism ΛtopU1
∼= ΛtopU0 ⊗ ΛtopU2.

More generally, show that for any exact sequence of real vector spaces 0→ U0 → U1 → U2 →
· · · → Uk → 0 there is a canonical isomorphism⊗

ΛtopUeven
∼=
⊗

ΛtopUodd.

Hence, by (170) we have a canonical isomorphism

detTp ∼= Λtop kerTp,V ⊗ ΛtopV ∗.

It can be shown not only that dim kerTp,V is constant in p near p0 but also that kerTp,V is trivial
in a neighborhood W of p0. Details can be found for instance in [MS12, Thm. A.2.2]. Thus, the
family of real lines {detTp | p ∈ W } admits a trivialization, i.e., detT is a vector bundle.

Definition 172. Two continuous families of Fredholm operators {Tp, i | p ∈ P}, i ∈ {0, 1} are said
to be homotopic, if there is a continuous family of Fredholm operators {Tp, t | (p, t) ∈ P × [0, 1] },
whose restriction to P × {0} and P × {1} yields the initial families.

Assume that {Tp, 0} is homotopic to {Tp, 1} and the determinant line bundle detTp, 1 is trivial.
Since P × [0, 1] is homotopy equivalent to P , the bundle detTp, t is also trivial. In particular,
detTp, 0 is trivial. More precisely, we have the following statement.

Proposition 173. Let {Tp, 0} and {Tp, 1} be homotopic families of Fredholm operators such that
detTp, 1 is trivial. Then detTp, 0 is also trivial. Moreover, a choice of a trivialization of detTp, 1
and a homotopy {Tp,t | t ∈ [0, 1]} yields a trivialization of detTp, 0. This is unique up to a
multiplication with a positive function. �
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6.5 Orientations and the Z–valued degree
Let X, Y, and W be Banach manifolds. Let F : X × W → Y be a smooth map such that the
following holds:

(a) Fw = F |X×{w} : X → Y is a Fredholm map of index d for each w ∈ W ;

(b) y ∈ Y is a regular value of F ;

(c) F−1
w (y) is compact for any w ∈ W ;

(d) det dxFw is trivial over X ×W .

Furthermore, I assume that a trivialization of the determinant line bundle has been fixed.
Pick any w ∈ W such that y is a regular value of Fw. Then for any x ∈ F−1

w (y) we have

det dxFw = Λtop ker dxFw = ΛtopTxF
−1
w (y)

so that the hypotheses above imply thatMw := F−1
w (y) is an oriented d–manifold.

Furthermore, let γ : [0, 1]→ W be a path connecting w0 and w1 akin to the situation considered
in Section 6.3. For generic γ the space

Mγ :=
{

(x, t) ∈ X × [0, 1] | Fγ(t)(x) = y
}

is an oriented manifold of dimension d+ 1 such that

∂Mγ =Mw1 tMw0 , (174)

whereMw0 means that the orientation ofMw0 is reversed.
In the particular case d = 0, Mw is just a finite collection of points {m1, . . . ,mk} equipped

with signs {ε1, . . . , εk } so that we can define

degFw :=
k∑
i=1

εk ∈ Z. (175)

In fact, for any two choices w0 and w1 as above, (174) implies that degFw0 = degFw1 provided w0

and w1 are in the same connected component. Thus, degFw does not depend on w as long as W is
connected.

The following result summarizes the considerations above.

Theorem 176. Assume F : X ×W → Y satisfies Hypotheses (a)–(d) above. Then degFw does
not depend on w. �

Clearly, the case d = 0 is not really special. Indeed, as we already know for any d ≥ 0,
Mw = F−1

w (y) is a smooth oriented manifold for all w in a dense subset in W . Then (174) shows
that for any two choices w0 and w1 in this subset,Mw0 andMw1 are cobordant, i.e., the oriented
cobordism class of [Mw] is well–defined and does not depend on w. One can take this oriented
cobordism class as an invariant, however, in practice it may be hard to deal with. One way to extract
a number out of this cobordism class is as follows.
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Let P → X be a (principal) bundle. Assume there are characteristic classes α1, . . . αk of P
such that α := α1 ∪ · · · ∪ αk ∈ Hd(X; Z) ⊂ Hd(X; R). Since the restriction of α toMw can be
represented by a closed d–form, say ω, Stokes’ theorem implies that

〈α, [Mw]〉 =

∫
Mw

ω

does not depend on w. In fact, this is an integer, since [ω] represents an integral cohomology class.

6.6 An equivariant setup
Let X be a Banach manifold equipped with an action of a Banach Lie group G. For any x ∈ X the
infinitesimal action of G at x is given by the linear map

Rx : Lie(G)→ TxX, (177)

whose image is the tangent space to the orbit through x.
For the sake of simplicity of exposition let me assume that G acts freely on X . It will be also

convenient to assume that X and G are Hilbert manifolds.

Definition 178. A Hilbert submanifold S ⊂ X containing x is said to be a local slice of the G-
action at x, if the set GS := {g · s | g ∈ G, s ∈ S} is open in X and the natural map

G × S → GS, (g, s) 7→ g · s

is a diffeomorphism.

Proposition 179. Assume G acts freely on X . If the G–action admits a slice at any point, then the
quotient X/G is a manifold.

The proof of this proposition is clear: S can be identified with a neighbourhood of the orbit
G · x in the quotient space X/G.

Example 180. The group U(1) acts on S2 by rotations around the z-axis. If we remove the north
and the south poles, this action is free. The submanifold

S :=
{

(x, 0, z) | x2 + z2 = 1, x > 0
} ∼= (−1, 1)

is a global slice for the U(1)–action. In particular, the quotient is a manifold, which in this case is
naturally diffeomorphic to an interval.

Let Y be a smooth manifold equipped with a G–action and F : X ×W → Y be a smooth map
such that each Fw : X → Y is G–equivariant. Let y ∈ Y be a fixed point of the G–action, i.e.,
g · y = y for all g ∈ G. For any x ∈ F−1

w (y) we can construct the sequence

0→ Lie(G)
Rx−−→ TxX

dxFw−−−−→ TyY → 0, (181)

which is in fact a complex. This follows immediately from the equivariancy of Fw (and the as-
sumption that y is a fixed point). This is called the deformation complex at x.
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The zero’s cohomology group of the deformation complex is just the Lie algebra of the stabilizer
of x. Our assumption implies that this is trivial.

The second cohomology group is just the cokernel of dxFw. This is trivial if and only if y is a
regular value for Fw.

It is also easy to understand the meaning of the first cohomology group. Indeed, ker dxFw is the
Zariski tangent space to F−1

w (y). Since y is fixed, G acts on F−1
w (y) so that the first cohomology

group can be thought of as the tangent space to the ‘moduli space’

Mw := F−1
w (y)/G

at G · x.
Since TxX is by assumption a Hilbert space, we have a linear map

Dx := (R∗x, dxFw) : TxX → Lie(G)⊕ TyY (182)

whose kernel can be identified with the first cohomology group of the deformation complex.

Theorem 183. Let y is a fixed point of the G–action on Y . Assume that the following holds:

(i) G acts freely on X;

(ii) y is a regular value for Fw;

(iii) There is a local slice at each point x ∈ F−1
w (y);

(iv) Dx is a Fredholm linear map of index d.

ThenMw is a smooth manifold of dimension d.

Proof. The statement is local, so we can restrict our attention to a neighborhood of a point x ∈
F−1
w (y). Let S be a slice at x so that TxS and ImRw are complementary subspaces in TxX . Then
y is still a regular value for Fw|S and

ker dxFw|S = ker(R∗x, dxFw)

so that F−1
w ∩ S is a manifold of dimension dim kerDx = d. �

By tracing through the discussion of Section 6.5 it is easy to see that the following theorem
holds.

Theorem 184. Assume that in addition to Hypotheses (i)–(iv) of Theorem 183 the determinant line
bundle detDx is trivialized and this trivialization is preserved by the action of G. Then Mw is
oriented. If in additionMw is compact for any w, then the oriented bordism class ofMw does not
depend on w. �
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7 The Seiberg–Witten gauge theory

7.1 The Seiberg–Witten equations
Recall that in dimension 4 we have an isomorphism of Spin(4) representations

R4 ⊗ C ∼= Hom(/S
+

; /S
−

), (185)

where Spin(4) acts on R4 via the homomorphism Spin(4) → SO(4). (185) is still valid as
an isomorphisms of Spinc(4)–representations. Somewhat more explicitly, the standard inclusion
R4 → Cl(R4) yields a monomorphism

R4 → Hom(/S
+

; /S
−

), v 7→ (ψ 7→ v · ψ).

Of course, we have also an inclusion R4 → Hom(/S
−

; /S
+

). Hence, the Clifford multiplication with
a 2–form yields a map Λ2R4 → End(/S

±
), whose kernel is Λ2

∓R4 as a straightforward computation
shows. Moreover, the image of this map consists of skew-Hermitian endomorphisms so that we
obtain an isomorphism

Λ2
+R4 → su(/S

+
),

whose complexification yields Λ2
+R4 ⊗ C ∼= End0(/S), cf. (111).

Notice also that we have a quadratic map

µ : /S
+ → i su(/S

+
) ⊂ End0(/S

+
), µ(ψ) = ψψ∗ − 1

2
|ψ|2,

where the expression on the right hand side means the following: µ(ψ)(ϕ) = 〈ϕ, ψ〉ψ + 1
2
|ψ|2 ϕ.

Somewhat more concretely, µ is just the map

C2 → i su(2),

(
ψ1

ψ2

)
7→ 1

2

(
|ψ1|2 − |ψ2|2 2ψ1ψ̄2

2 ψ̄1ψ2 |ψ2|2 − |ψ1|2
)
.

Hence, we can think of µ(ψ) as a purely imaginary self–dual 2-form.

A more global version of these identifications is as follows. Pick an oriented Riemannian four–
manifold M equipped with a spinc structure. Denote by /S± the corresponding spinor bundles, see
Section 4.3 for details. Then we have the isomorphisms of vector bundles

T ∗CM
∼= Hom(/S

+
; /S
−

), (186)

iΛ2
+T
∗M ∼= i su(/S

+
) (187)

and a fiberwise quadratic map
µ : /S

+ → iΛ2
+T
∗M.

With this understood, the Seiberg–Witten equations for a pair (ψ,A) ∈ Γ(/S
+

)×A(Pdet) are as
follows:

/D
+
Aψ = 0 and F+

A = µ(ψ). (188)

It is also convenient to introduce the Seiberg–Witten map by

SW : Γ(/S
+

)×A(Pdet)→ Γ(/S
−

)× Ω2
+(M ; Ri), SW (ψ,A) =

(
/D

+
ψ, F+

A − µ(ψ)
)
.
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7.1.1 The gauge group action

Since the structure group of Pdet is the abelian group U(1), we have an identification G := G(Pdet) ∼=
C∞(M ; U(1)). This acts on A(Pdet) on the right by gauge transformations:

A · g = A+ 2 g−1dg. (189)

We can extend this to the right action of G on the configuration space Γ(/S
+

)×A(Pdet) as follows:

(ψ,A) · g = (ḡψ, A · g).

We let also G act on Γ(/S
−

) on the left in the obvious manner. Extending this action by the
trivial one on Ω2

+(M ; Ri), we obtain a left action of G on Γ(/S
−

)× Ω2
+(M ; Ri).

Lemma 190. The Seiberg–Witten map is G-equivariant, i.e.,

SW
(
(ψ,A) · g

)
= ḡ · SW (ψ,A). �

From this we obtain that G acts on the space of solutions of (188). The quotient

MSW =
{

(ψ,A) is a solution of (188)
}
/G

is called the Seiberg–Witten moduli space.
Notice that the action of G on the configuration space is not free. Indeed, if g ∈ G is the

stabilizer of a point (ψ,A) in the configuration space, then (189) implies that g is constant. Hence,

Stab(ψ,A) 6= {1} ⇐⇒ ψ ≡ 0.

The point (ψ,A) with a non-vanishing spinor ψ are called irreducible, while points of the form
(0, A) are called reducible.

Denote also

Mirr
SW :=

{
(ψ,A) is an irreducible solution of (188)

}
/G.

7.1.2 The deformation complex

As we know from Section 6.6, for any solution (ψ,A) of the Seiberg–Witten equations, we can
associate the deformation complex5:

0→ Ω0(M ; Ri)
R(ψ,A)−−−−→ Γ(/S

+
)⊕ Ω1(M ; Ri)

d(ψ,A)SW−−−−−−→ Γ(/S
−

)⊕ Ω2
+(M ; Ri)→ 0. (191)

To explain, since A(Pdet) is an affine space modelled on Ω1(M ; Ri), the tangent space to the
configuration space at any point can be naturally identified with the middle space of the complex.
It is easy to compute the infinitesimal action of the gauge group:

R(ψ,A) ξ =
(
−ξψ, 2 dξ

)
, ξ ∈ Ω0(M ; R).

5Strictly speaking, at this point the constructions of Section 6.6 are not applicable, but we will see below how to fix
this.
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Lemma 192. We have

d(ψ,A)SW (ψ̇, ȧ) =
(
/D

+
Aψ̇ +

1

2
ȧ · ψ, d+ȧ− 2µ(ψ, ψ̇)

)
,

where the second summand of the first component means the Clifford multiplication of ȧ and ψ,
d+ȧ is the projection of dȧ onto the space of self–dual 2-forms, and µ(·, ·) is the polarization of
µ. �

Proposition 193. For any solution (ψ,A) of the Seiberg–Witten equations (191) is an elliptic com-
plex.

The proof of this proposition hinges on the following result, which is of independent interest.

Proposition 194. For any Riemannian oriented four–manifold X , the Atiyah complex

0→ Ω0(X)
d−→ Ω1(X)

d+−−→ Ω2
+(X)→ 0

is elliptic. �

One can prove this proposition either by computing the principal symbols in local coordinates
or by noticing that d+ + d∗ is a twisted Dirac operator. I leave the details to the reader.

Proof of Proposition 193. Modulo zero order terms, which are clearly immaterial for the statement
of this proposition, (191) can be written as the direct sum of the Atiyah complex and

0→ 0→ Γ(/S
+

)
/D
+

−−−→ Γ(/S
−

)→ 0.

The claim follows from the ellipticity of both complexes. �

7.1.3 Sobolev completions

The smooth category, which was used to define the Seiberg–Witten map, does not allow us to use
the technique developed in Section 6. Hence, we will work with Sobolev completions of the spaces
under considerations. This is described next.

Pick any A0 ∈ A(Pdet) so that we can identify A(Pdet) with Γ(T ∗M ⊗ Ri) even if not canon-
ically so. For any fixed (k, p) the space

Ak,p(Pdet) := A0 +W k,p(T ∗M ⊗ Ri).

is an affine Banach space, hence a Banach manifold. It is easy to see that the resulting structure is
independent of the choice of A0.

Just like in the case of the configuration space, it is also convenient to complete the gauge
group. Namely, a map M → S1 is said to be of class W k,p if the composition M → S1 ⊂ R2 is
in W k,p(M ; R2). The subset Gk,p of all such maps is not a vector space, however this is a Banach
manifold. Moreover, if kp > 4 the Sobolev multiplication theorem shows that Gk,p is closed under
the pointwise multiplication, so that Gk,p is in fact a Banach Lie group. Its Li algebra is given by

Lie(Gk,p) = W k,p(M ; Ri).
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Proposition 195. For any k and any p > 1 such that kp > 4 = dimM the Seiberg–Witten map
extends as a smooth map

SW : W k+1,p(/S
+

)×Ak+1,p(Pdet)→ W k,p(/S
−

)×W k,p(Λ2
+T
∗M ⊗ Ri).

The action of the gauge group extends to a smooth action of Gk+2,p and SW is equivariant with
respect to this action.

Proof. Pick a smooth connection A0 as a reference point. Then recalling (127) we obtain by The-
orem 136 (iv)

/D
+
A0+aψ = /D

+
A0
ψ +

1

2
a · ψ ∈ W k,p(/S

−
),

F+
A0+a − µ(ψ) = F+

A0
+ d+a− µ(ψ) ∈ W k,p(Λ2

+T
∗M ⊗ Ri),

where a ∈ W k+1,p(T ∗M ⊗ Ri).
The fact that the action of the gauge group extends follows from the Sobolev multiplication

theorem and (189), which explains the choice k + 2 when completing the gauge group. �

In what follows, any (k, p) with k sufficiently large would work. For the sake of definiteness, I
will stick to (k, p) = (5, 2), which suffices for the arguments invoked below.

7.1.4 Compactness of the Seiberg–Witten moduli space

The most important property of the Seiberg–Witten moduli space is its compactness. In this section
I explain whyMSW enjoys this property.

Before going into details, let me briefly explain the approach. Given any sequence (ψn, An) we
need to show that there is a convergent subsequence. This would follow from the compactness of
Sobolev embedding, if we could establish that the sequence ‖(ψn, An)‖W 6,2 is bounded from above
by a constant independent of n. Here we have the freedom to change solutions by the gauge group
action, since we want to extract a subsequence, which converges in the quotient space C/G. In fact,
we will see below that (ψn, An) is bounded in W k,2 for any k ≥ 0 possibly after applying gauge
transformations.

The formal proof requires a number of technical lemmas. The key property is as follows.

Lemma 196. There is a constant C > 0 such that for any solution

(ψ,A) ∈ C5,2 := W 5,2(/S
+

)×A5,2(Pdet)

of the Seiberg–Witten equations we have

‖ψ‖C0 ≤ C.

Proof. First notice that ψ ∈ W 5,2 implies that ψ ∈ C2.
Let x0 be the point of maximum of the function |ψ|2. The pointwise equality

∆|ψ|2 = 2 〈∇∗A∇Aψ, ψ〉 − 2 |∇Aψ|2
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implies that
〈∇∗A∇Aψ, ψ〉 ≥ |∇Aψ|2 at x0.

Furthermore, notice also that we have the following pointwise equality:

〈µ(ψ)ψ, ψ〉 =
〈
|ψ|2ψ − 1

2
|ψ|2ψ, ψ

〉
=

1

2
|ψ|4.

Combining this with the Weitzenböck formula, we obtain

0 = 〈∇∗A∇Aψ, ψ〉+
1

4
sg|ψ|2 +

1

2
|ψ|4.

Hence, at x0 the following holds:

1

4
sg(x0)|ψ|2(x0) +

1

2
|ψ|4(x0) ≤ −|∇Aψ|2(x0) ≤ 0.

If |ψ(x0)| = 0, there is nothing to prove. If |ψ|(x0)| > 0, then the above inequality yields

|ψ|2(x0) ≤ −1

2
sg(x0),

thus providing the required estimate. �

Remark 197. Notice that the proof of this lemma does not go through for the equations /D
+
Aψ =

0, F+
A = −µ(ψ), which differ from (188) just by a sign.

Corollary 198. For any p > 1 there is a non-negative constant κp, which depends on the back-
ground Riemannian metric g only, such that for any solution (ψ,A) ∈ C5,2 of the Seiberg–Witten
equations the following estimate holds: ‖ψ‖Lp ≤ κp. �

Corollary 199. For any solution (ψ,A) of the Seiberg–Witten equations we have the estimates

‖F+
A ‖L2 ≤ C and ‖F−A ‖L2 ≤ C − 4π2 c1(Ldet)

2, (200)

where the constants depend on the background metric only.

Proof. The first inequality follows immediately from Corollary 198. To prove the second bound,
recall that the first Chern class of Ldet is represented by i

2π
FA so that we have

c1(Ldet)
2 =

i2

(2π)2

∫
M

FA ∧ FA = − 1

4π2

∫
M

(F+
A ∧ F+

A + F−A ∧ F−A )

=
1

4π2

(
‖F+

A ‖2
L2 − ‖F−A ‖2

L2

)
,

which yields the required bound. �

Remark 201. Of course, the right hand side of the second inequality of (200) is just a constant
independent of the solution. However, this explicit form will be useful below.

The proof of the proposition below hinges on the following technical lemma, which follows
essentially from the elliptic estimate.
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Lemma 202 ([Mor96, Lemma 5.3.1]). Let L be any Hermitian line bundle over M . Fix a smooth
reference connection A0. For sny k ≥ 0 there are positive constants C1 and C2 with the following
property: For any W k,2–connection A on L there is a gauge transformation g ∈ Gk+1,2 such that
A · g = A0 + α, where α ∈ W k,2(T ∗M ⊗ Ri) satisfies

d∗α = 0 and ‖α‖Wk,2 ≤ C1‖F+
A ‖Wk−1,2 + C2.

Moreover, the harmonic component αh of α can be assumed to be bounded in L2 by a constant
independent of k. �

Proposition 203. For each k ≥ 0 there are positive constants Ck > 0 with the following property:
For any solution (ψ,A) of the Seiberg–Witten equations there is a gauge transformation g ∈ Gk+1,2

such that
‖(ψ, α)‖Wk,2 ≤ Ck, (204)

where A · g = A0 + α.

Proof. The proof is given via the induction on k. However, a few first values of k require a special
treatment.

For k = 0 we know already that ‖(ψ, F+
A )‖L2 is bounded by a constant independent of (ψ,A).

Lemma 202 yields immediately the required estimate for α.
For k = 1, using the Seiberg–Witten equations we have

0 = /D
+
Aψ = /D

+
A0
ψ +

1

2
α · ψ,

where the second summand is bounded in L2 by Lemma 196. Invoking the elliptic estimate for
/D

+
A0

, we obtain a bound for ψ in W 1,2. This proves (204) for k = 1.
Let us consider the case k = 2. Notice that by the Seiberg–Witten equations we have the

pointwise estimate

|∇LCF+
A | = |∇LCµ(ψ)| ≤ C|∇A0ψ||ψ| ≤ C|∇A0ψ|,

where the first inequality follows from the fact that µ is quadratic and the second one follows by
Lemma 196. This clearly implies a bound on the W 1,2-norm of F+

A . This in turn, yields a bound
on the W 2,2–norm of α.

Furthermore, the bound for ‖α‖W 2,2 together with the Sobolev multiplication theorem yields
that α · ψ is bounded in W 1,2. By the same token as above, this yields the W 2,2–bound on ψ.

By now, the reader will have no difficulties in proving (204) for k = 3. I leave this as an
exercise.

We are now prepared to make the induction step. Thus, assume that (204) has been established
for some k ≥ 3. Since W k,2 is an algebra for k ≥ 3, we have a bound on F+

A in W k,2. Lemma 202
yields a W k+1,2–bound on α.

By a similar argument, α · ψ is bounded in W k,2 so that the elliptic estimate yields a W k+1,2–
bound for ψ. This finishes the proof of this proposition. �

Corollary 205. The Seiberg–Witten moduli space

M :=
{

(ψ,A) ∈ C5,2 | SW (ψ,A) = 0
}
/G6,2

is compact.
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Proof. Any sequence of solutions (ψn, An) is gauge equivalent to a sequence (ψn, A0 + αn) such
that (ψn, αn) is bounded in W 6,2. By the Sobolev embedding theorem, a subsequence converges in
C5,2 and the limit is a solution of the Seiberg–Witten equations. �

In fact, Corollary 205 can be substantially strengthened, as the following result shows.

Theorem 206. For each solution (ψ,A) ∈ C5,2 of the Seiberg–Witten equations there is a gauge
transformation g ∈ G6,2 such that (ψ,A) · g is smooth. Furthermore,M is homeomorphic to

M∞ :=
{

(ψ,A) ∈ Γ(/S
+

)×A(Pdet) | SW (ψ,A) = 0
}
/C∞(M ; U(1)).

This space is compact in the C∞–topology.

Proof. Let (ψ,A) ∈ C5,2 be any solution. By Proposition 203, FA = FA·g = FA0 + dα ∈ W k−1,2

for all k. In particular, FA is smooth.
Writing A · g = A0 + α as before, we obtain

(d+ d∗)α = dα = FA − FA0 ∈ C∞.

By the elliptic regularity, α is smooth, i.e., A is smooth. Hence, ψ is also smooth as an element of
the kernel of a smooth elliptic differential operator /D+

A.
Furthermore, let (ψn, An) be any sequence of smooth solutions. By Corollary 205, this contains

a subsequence still denoted by (ψn, An), which converges in the W 5,2–topology after possibly
applying a sequence of G6,2 gauge transformations and the limit lies also in C5,2.

Since (ψn, An) is bounded in W 7,2, a subsequence converges in W 6,2 after possibly applying a
sequence of G7,2 gauge transformations. Repeating this process for each k ≥ 6 and choosing the
diagonal subsequence, we obtain the claim. �

7.1.5 Slices

In this section we wish to construct local slices for the gauge group action on the subspace of
irreducible configurations

C5,2
irr :=

{
(ψ,A) ∈ C5,2 | ψ 6≡ 0

}
,

where G6,2 acts freely.
The tangent space to the slice at a point (ψ,A) must be transversal to ImR(ψ,A), hence it is

natural to consider the kernel of the formal adjoint operator

R∗(ψ,A)(ψ̇, ȧ) = 2 d∗ȧ+ i Re〈ψ, i ψ̇〉.

Here 〈·, ·〉 denotes the Hermitian scalar product on the spinor bundle.

Proposition 207. For any irreducible configuration (ψ,A) the subspace

(ψ,A) + kerR∗(ψ,A)

is a slice for the G6,2–action on C5,2
irr . Here kerR∗(ψ,A) means the kernel of the map R∗(ψ,A) : W 5,2 →

W 4,2. �
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7.1.6 A perturbation

In general, there is no reason to expect that the origin will be a regular value for the Seiberg–Witten
map. However, a family of perturbations just like in Section 6.3 can be constructed by hand.

Proposition 208. The origin is a regular value of the map

SW : C5,2
irr ×W 4,2(Λ2

+T
∗M ⊗ Ri)→ W 4,2(/S

−
)×W 4,2(Λ2

+T
∗M ⊗ Ri),

SW(ψ,A, η) =
(
/D

+
Aψ, F

+
A − µ(ψ)− η

)
.

Proof. The perturbation has been chosen so that

pr2

∂SW
∂η

: W 4,2(Λ2
+T
∗M ⊗ Ri)→ W 4,2(Λ2

+T
∗M ⊗ Ri)

is surjective. Hence, it is enough to show that the map

T := pr1 d(ψ,A)SWη : T(ψ,A)C5,2 → W 4,2(/S
−

), (ψ̇, Ȧ) 7→ /DAψ̇ +
1

2
Ȧ · ψ

is also surjective for any solution (ψ,A) of the perturbed Seiberg–Witten equations.
Assume this is not the case. Then there is a non-zero vector

ϕ ∈ ImT⊥ :=
{
ϕ ∈ W 4,2 | 〈T (ψ̇, Ȧ), ϕ〉L2 = 0 ∀(ψ̇, Ȧ)

}
.

In particular, we have 0 = 〈 /D+
Aψ̇, ϕ〉L2 = 〈ψ̇, /D−Aϕ〉L2 , which implies

/D
−
Aϕ = 0. (209)

Also,
0 = 〈T (0, Ȧ), ϕ〉L2 = 〈Ȧ · ψ, ϕ〉L2 (210)

for all Ȧ ∈ W 5,2(T ∗M ⊗ Ri).
SinceW 5,2 ⊂ C0 in dimension four, ψ is continuous and by assumption does not vanish identic-

ally. Hence, there is a point m ∈M such that ψ does not vanish on a neighborhood U of m.
Furthermore, notice that the Clifford multiplication with a fixed non-zero vector ψ0 ∈ /S

+ is
surjective, i.e., the map

R4 → /S
−
, v 7→ v · ψ0

(here /S± are thought of as Spinc(4)–representations) is surjective. This implies the following: if ϕ
does not vanish on U , then there is some Ȧ supported in U such that 〈Ȧ · ψ, ϕ〉L2 > 0. However,
this contradicts (210) so that we conclude that ϕ must vanish on an open set. Then, by a theorem
of Aronszajn [Aro57], (209) implies that ϕ vanishes identically. This in turn proves the surjectivity
of T and finishes the proof of this proposition. �

The deformation complex at a solution of the perturbed Seiberg–Witten equations

/D
+
Aψ = 0, F+

A = µ(ψ) + η

is given again by (191) since the differentials of SW = SW0 and SWη coincide. Hence, this
complex is elliptic and therefore the operator(

d(ψ,A)SWη, R
∗
(ψ,A)

)
: W 5,2(/S

+ ⊕ T ∗X ⊗ Ri)→ W 4,2(/S
− ⊕ Λ2

+T
∗X ⊗ Ri) (211)

is also elliptic by Exercise 159. Thus, (211) is Fredholm so that by appealing to Theorem 183, we
obtain the following result.
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Corollary 212. There is a subset H ⊂ W 4,2(Λ2
+T
∗X ⊗ Ri) of the second category such that for

any η ∈ H the space

Mirr
η :=

{
(ψ,A) ∈ C5,2 | SW(ψ,A, η) = 0, ψ 6≡ 0

}
/G6,2

is a smooth manifold of dimension

d =
1

4

(
c1(Ldet)

2 − 2χ(M)− 3 sign(M)
)
, (213)

where χ(M) and sign(M) := b+
2 − b−2 are the Euler characteristic and the signature of M respect-

ively.

Proof. We only need to prove the formula for the dimension of the moduli space. To this end the
following fact will be useful: The index is a locally constant function on the space of all Fredholm
operators. Equivalently, if {Tt | t ∈ [0, 1]} is a one-parameter family of Fredholm operators, then
indexT0 = indexT1.

With this understood, consider the operator

D(ψ,A) :=
(
d(ψ,A)SWη, R

∗
(ψ,A)

)
: T(ψ,A)C5,2 → W 4,2

(
/S
− ⊕ Λ2

+T
∗M ⊗ R i ⊕ R i

)
. (214)

Writing

D(ψ,A) =

(
/D

+
A

d+ + d∗

)
+B = D0 +B, (215)

where B is a zero order operator, we see that D(ψ,A) is homotopic through Fredholm operators to
D0. Since D0 decouples, we have

indexD0 = index /D
+
A + index(d+ + d∗).

The latter index is easily computed: index(d+ + d∗) = b1 − b0 − b+
2 = 1

2
(χ + sign). The index of

/D
+
A can be computed by applying the Atiyah–Singer index theorem:

indexC /D
+
A =

1

8

(
c1(Ldet)

2 − sign
)
.

This yields the result. �

Remark 216. Strictly speaking, at this point we should redo the analysis of the compactness of the
Seiberg–Witten moduli space for the perturbed equations. However, this requires cosmetic changes
only. The reader should have no difficulties to check that this is indeed the case.

7.1.7 Reducible solutions

While Corollary 212 yields a smooth moduli space, by removing some points we lost an essential
property, namely compactness. The following lemma demonstrates how to deal with this problem.

Proposition 217. Assume b+
2 ≥ 1. Then there is an affine subspace Q ⊂ W 4,2(Λ2

+T
∗M ⊗ R i) of

codimension b+
2 with the following property: If η /∈ Q, then there are no reducible solutions of the

Seiberg–Witten equations.

Proof. Pick a reference connection A0 on Ldet and denote Q := F+
A0

+ Im d+, which is a subspace
of codimension b+

2 . Clearly, if η /∈ Q, then there are no reducible solutions. �

Corollary 218. Assume b+
2 ≥ 1. Then for a generic η the perturbed Seiberg–Witten moduli space

Mη contains no reducible solutions. �
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7.1.8 Orientability of the Seiberg–Witten moduli space

As we have already seen in the proof of Corollary 212, D(ψ,A) defined by (214) is homotopic
through elliptic operators to D0, which is given by (215). This can be also used to orient the
Seiberg–Witten moduli space. The key is the following simple observation.

Lemma 219. Let P be a topological space. If {Tp, 0 | p ∈ P } and {Tp, 1 | p ∈ P } are two
homotopic families of linear Fredholm maps, then detT0

∼= detT1. More precisely, this means that
detT1 is trivial if and only if detT0 is trivial and a trivialization of detT0 induces a trivialization
of detT1. The latter is well-defined up to a multiplication with an everywhere positive function.

Proof. Let {Tp, t | (p, t) ∈ P × [0, 1] } be a homotopy through linear Fredholm maps. Then detT
is well-defined over P × [0, 1] and restricts to detT0 and detT1 on the corresponding components
of the boundary. This implies the statement of this lemma. �

Remark 220. Let detT be as in the proof of the lemma above. One can construct an isomorphism
between detT0 and detT1 explicitly by introducing a connection on detT and taking the parallel
transport along the curves t 7→ (p, t).

With this understood, to orient the Seiberg–Witten moduli space it suffices to check that detD0

is trivial and pick a trivialization of this bundle. Since D0 splits, we have

detD0
∼= det /D

+
A ⊗ det(d+ + d∗).

Notice that /D+
A is a complex linear map. In particular, both kerD+

A and cokerD+
A
∼= kerD−A are

complex linear subspaces, hence oriented. This implies that the real determinant bundle det /D
+
A is

trivial.
Furthermore, we have

ker(d+ + d∗) = H1
dR(M ;R i), coker(d+ + d∗) = H0(M ;R i)⊕H2

+(M ;R i).

Hence, by picking an orientation of these cohomology groups, a trivialization of det(d+ + d∗) is
fixed. This in turn yields a trivialization of detD0, hence also of detD(ψ,A). Thus, the Seiberg–
Witten moduli space is orientable and a choice of orientations of the cohomology groupsH0(M ;R),
H1(M ;R i) and H2

+(M ;R i) yields an orientation of the Seiberg–Witten moduli space.

Remark 221. Strictly speaking, the orientation of the Seiberg–Witten moduli space we constructed
in this section is not canonical. First, there are at least two commonly used non-equivalent conven-
tions how to orient complex linear spaces. Namely, if V is a complex linear space and (v1, . . . , vk)
is a complex basis of V , the underlying real vector space VR can be oriented by saying that

(v1, . . . , vk, iv1, . . . , ivk) or (v1, iv1, . . . , vk, ivk)

determines an orientation of VR. This yields the opposite orientations in the case k = dimC V is
even.

Secondly, orientations of H0(M ;R), H1(M ;R i) and H2
+(M ;R i) is again a choice. Notice

however, that these vector spaces depend on the topological structure of M only.
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7.2 The Seiberg–Witten invariant
Combining results obtained in the preceding sections we arrive at our main result.

Theorem 222. Assume b+
2 (M) ≥ 2. For any spinc-structure σ ∈ S(M) and any generic η the

perturbed Seiberg–Witten moduli spaceMη is a smooth compact oriented manifold of dimension
d, which is given by (213). Moreover, if η0 and η1 are any two generic perturbations, thenMη0 and
Mη1 are oriented-bordant. �

The only thing, which perhaps needs an explanation, is the hypothesis b+
2 (M) ≥ 2. The point is

that this ensures that a generic bordism betweenMη0 andMη1 does not contain reducible solutions
and therefore is smooth.

Remark 223. Notice thatMη depends on the choice of σ but this dependence is suppressed in the
notations.

With this understood, we can proceed to the definition of the Seiberg–Witten invariant. Pick a
point m0 ∈ M and consider the based gauge group G0 := {g ∈ W 6,2(M ; U(1)) | g(m0) = 1 },
which fits into the exact sequence

{1} → G0 → G
evm0−−−−→ U(1)→ {1},

where evm0 is the evaluation at m0. Then the quotient

M̂η := {(ψ,A) ∈ C5,2 | SWη(ψ,A) = 0}/G0

is called the framed moduli space and is equipped with a free action of U(1) = G/G0. Clearly, the
quotient M̂η/U(1) is justMη so that M̂η is a principal U(1)–bundle overMη. Let µ be the first
Chern class of this U(1)–bundle. Notice that this M̂η is just a restriction toMη of the following
bundle: Cirr/G0 → Cirr/G.

Definition 224. The Seiberg–Witten invariant of M is a function sw : S(M)→ Z defined by

sw(σ) :=

{〈
[Mη], µ

d/2
〉

if d is even,
0 if d is odd.

Theorem 225. The Seiberg–Witten invariant vanishes for all but finitely many spinc structures.

Proof. If sw(σ) 6= 0, thenMη is a smooth manifold of dimension d ≥ 0. Hence,

c1(Ldet)
2 ≥ 2χ(M) + 3 sign(M).

By (200), we have6 ‖F−A ‖2
L2 ≤ C, where C depends on the background Riemannian metric and the

topology of M only. This yields that ‖FA‖2
L2 is also bounded by a constant, which depends on the

background Riemannian metric and the topology of M only. This in turn shows that |c1(Ldet)|2 =
|c1(Ldet) ∪ PD(c1(Ldet))| = 1

4π2‖FA‖2
L2 ≤ C, where PD stays for the Poincaré dual class. This

proves the statement of this theorem. �
6At this point we should have used an analogous a priory estimate for the perturbed Seiberg–Witten equations, cf.

Remark 216. However, this does not change the argument.
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7.2.1 Sample application of the Seiberg–Witten invariant

The Seiberg–Witten invariant are most well–known for its applications to the topology of smooth
four–manifolds. I restrict myself just to a list of some sample applications.

Theorem 226 (Witten). If M with b+
2 ≥ 2 admits a metric of positive scalar curvature, then

swM ≡ 0. �

The proof of this theorem follows easily from the Weitzenböck formula.

Theorem 227 (Witten). Let M1 and M2 be closed four-manifolds both with b+
2 ≥ 1. Then the

Seiberg–Witten invariant of the connected sum M1#M2 vanishes. �

These vanishing theorems are complemented by the following non-vanishing result, which can
be also viewed as the statement about obstructions for the existence of symplectic strutures on
closed smooth four-manifolds.

Theorem 228 (Taubes). If M is symplectic and b+
2 (M) ≥ 2, then swM 6≡ 0. �

The results below were originally obtained by other methods, however can be also obtained
with the help of the Seiberg–Witten theory.

Theorem 229 (Donaldson). There are (many) closed topological four-manifolds, which do not
admit a smooth structure. �

Theorem 230 (Fintushel–Stern). There are infinitely many closed four-manifolds, which are all
homeomorphic, but pairwise non-difeomorphic. �

Put differently, the last two theorems say the following: On a given closed topological four-
manifold there may or may not be a smooth structure and if a smooth structure exists, there may
well be infinitely many such structures.

References
[Aro57] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or

inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235–249. MR0092067 ↑68

[Bes08] A. Besse, Einstein manifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008. Reprint of the 1987
edition. MR2371700 ↑23

[BGPG07] S. Bradlow, O. García-Prada, and P. Gothen, What is. . . a Higgs bundle?, Notices Amer. Math. Soc. 54
(2007), no. 8, 980–981. MR2343296 ↑34

[BT03] D. Barden and C. Thomas, An introduction to differential manifolds, Imperial College Press, London, 2003.
MR1992457 ↑7, 53

[BT82] R. Bott and L. Tu, Differential forms in algebraic topology, Graduate Texts in Mathematics, vol. 82,
Springer-Verlag, New York-Berlin, 1982. MR658304 ↑28

[DK90] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Mono-
graphs, The Clarendon Press Oxford University Press, New York, 1990. Oxford Science Publications. ↑3

[Don02] S. K. Donaldson, Floer homology groups in Yang-Mills theory, Cambridge Tracts in Mathematics, vol. 147,
Cambridge University Press, Cambridge, 2002. With the assistance of M. Furuta and D. Kotschick.
MR1883043 (2002k:57078) ↑3

72

http://www.ams.org/mathscinet-getitem?mr=0092067
http://www.ams.org/mathscinet-getitem?mr=2371700
http://www.ams.org/mathscinet-getitem?mr=2343296
http://www.ams.org/mathscinet-getitem?mr=1992457
http://www.ams.org/mathscinet-getitem?mr=658304
http://www.ams.org/mathscinet-getitem?mr=1883043
http://www.ams.org/mathscinet-getitem?mr=1883043


Introduction to Gauge Theory

[Eva10] L. Evans, Partial differential equations, Second, Graduate Studies in Mathematics, vol. 19, American
Mathematical Society, Providence, RI, 2010. MR2597943 ↑4

[FU91] D. Freed and K. Uhlenbeck, Instantons and four-manifolds, Second, Mathematical Sciences Research In-
stitute Publications, vol. 1, Springer-Verlag, New York, 1991. MR1081321 ↑3

[Got14] Peter B. Gothen, Representations of surface groups and Higgs bundles, Moduli spaces, 2014, pp. 151–178.
MR3221295 ↑34

[GP10] V. Guillemin and A. Pollack, Differential topology, AMS Chelsea Publishing, Providence, RI, 2010. Re-
print of the 1974 original. MR2680546 ↑53, 56

[GS99a] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20,
American Mathematical Society, Providence, RI, 1999. MR1707327 ↑40

[GS99b] V. Guillemin and S. Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and
Present, Springer-Verlag, Berlin, 1999. MR1689252 ↑23

[Joy07] D. Joyce, Riemannian holonomy groups and calibrated geometry, Oxford Graduate Texts in Mathematics,
vol. 12, Oxford University Press, Oxford, 2007. MR2292510 ↑23

[KM07] P. Kronheimer and T. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10,
Cambridge University Press, Cambridge, 2007. MR2388043 ↑3

[KN96] S. Kobayashi and K. Nomizu, Foundations of differential geometry. Vol. I, Wiley Classics Library, John
Wiley & Sons, Inc., New York, 1996. Reprint of the 1963 original, A Wiley-Interscience Publication.
MR1393940 ↑33

[LM89] B. Lawson and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series, vol. 38, Princeton Uni-
versity Press, Princeton, NJ, 1989. MR1031992 (91g:53001) ↑34, 37

[Mil97] J. Milnor, Topology from the differentiable viewpoint, Princeton Landmarks in Mathematics, Princeton
University Press, Princeton, NJ, 1997. Based on notes by David W. Weaver, Revised reprint of the 1965
original. MR1487640 ↑54

[Moo96] J. Moore, Lectures on Seiberg-Witten invariants, Lecture Notes in Mathematics, vol. 1629, Springer-
Verlag, Berlin, 1996. MR1439049 (97m:57051) ↑3

[Mor96] J. Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Math-
ematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR1367507 ↑3, 40, 66

[MS12] D. McDuff and D. Salamon, J-holomorphic curves and symplectic topology, Second, American Mathem-
atical Society Colloquium Publications, vol. 52, American Mathematical Society, Providence, RI, 2012.
MR2954391 ↑57

[Ray18] S. Rayan, Aspects of the topology and combinatorics of Higgs bundle moduli spaces, SIGMA Symmetry
Integrability Geom. Methods Appl. 14 (2018), Paper No. 129, 18. MR3884746 ↑34

[Sal89] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Mathematics Series,
vol. 201, Longman Scientific & Technical, Harlow, 1989. MR1004008 (90g:53058) ↑23

[Wel80] R. O. Wells Jr., Differential analysis on complex manifolds, Second, Graduate Texts in Mathematics,
vol. 65, Springer-Verlag, New York-Berlin, 1980. MR608414 ↑4, 50

73

http://www.ams.org/mathscinet-getitem?mr=2597943
http://www.ams.org/mathscinet-getitem?mr=1081321
http://www.ams.org/mathscinet-getitem?mr=3221295
http://www.ams.org/mathscinet-getitem?mr=2680546
http://www.ams.org/mathscinet-getitem?mr=1707327
http://www.ams.org/mathscinet-getitem?mr=1689252
http://www.ams.org/mathscinet-getitem?mr=2292510
http://www.ams.org/mathscinet-getitem?mr=2388043
http://www.ams.org/mathscinet-getitem?mr=1393940
http://www.ams.org/mathscinet-getitem?mr=1031992
http://www.ams.org/mathscinet-getitem?mr=1031992
http://www.ams.org/mathscinet-getitem?mr=1487640
http://www.ams.org/mathscinet-getitem?mr=1439049
http://www.ams.org/mathscinet-getitem?mr=1439049
http://www.ams.org/mathscinet-getitem?mr=1367507
http://www.ams.org/mathscinet-getitem?mr=2954391
http://www.ams.org/mathscinet-getitem?mr=3884746
http://www.ams.org/mathscinet-getitem?mr=1004008
http://www.ams.org/mathscinet-getitem?mr=1004008
http://www.ams.org/mathscinet-getitem?mr=608414

	Introduction
	Bundles and connections
	Vector bundles
	Basic notions
	Operations on vector bundles
	Sections
	Covariant derivatives
	The curvature
	The gauge group

	Principal bundles
	The frame bundle and the structure group
	The associated vector bundle
	Connections on principal bundles
	The curvature of a connection on a principal bundle
	The gauge group

	The Levi–Civita connection
	Classification of U(1) and SU(2) bundles
	Complex line bundles
	Quaternionic line bundles


	The Chern–Weil theory
	The Chern–Weil theory
	The Chern classes

	The Chern–Simons functional
	The modui space of flat connections
	Parallel transport and holonomy
	The monodromy representation of a flat connection


	Dirac operators
	Spin groups and Clifford algebras
	Dirac operators
	Spin and Spinc structures
	On the classification of spinc structures

	The Weitzenböck formula

	Linear elliptic operators
	Sobolev spaces
	Elliptic operators
	Elliptic complexes
	A gauge-theoretic interpretation
	The de Rham complex


	Fredholm maps
	The Kuranishi model and the Sard–Smale theorem
	The Z/2Z degree
	The parametric transversality
	The determinant line bundle
	Orientations and the Z–valued degree
	An equivariant setup

	The Seiberg–Witten gauge theory
	The Seiberg–Witten equations
	The gauge group action
	The deformation complex
	Sobolev completions
	Compactness of the Seiberg–Witten moduli space
	Slices
	A perturbation
	Reducible solutions
	Orientability of the Seiberg–Witten moduli space

	The Seiberg–Witten invariant
	Sample application of the Seiberg–Witten invariant



