MATH-F211: Topologie

TP 2 - Espaces métriques

Thomas Saillez, Andriy Haydys

Exercice 1. Soit (M, d) un espace métrique et $x, y \in M$. On note d(x, y) = 2r. Démontrer que les boules B(x, r) et B(y, r) sont disjointes.

Exercice 2. Soit (M, d) un espace métrique et k > 0 et soient

$$d_1(x,y) = kd(x,y),$$

$$d_2(x,y) = \min(1, d(x,y)),$$

$$d_3(x,y) = \frac{d(x,y)}{1 + d(x,y)},$$

$$d_4(x,y) = (d(x,y))^2.$$

Démontrer que d_1, d_2 et d_3 sont des métriques mais démontrer que d_4 n'en est pas forcément une.

Exercice 3. La métrique parisienne d_P sur \mathbb{R}^2 est définie par les règles suivantes: si la droite qui passe par x et y passe par 0, alors $d_P(x,y) = ||x-y||$, sinon $d_P(x,y) = ||x|| + ||y||$.

Vérifier qu'il s'agit bien d'une métrique.

(Le nom de cette métrique vient d'une particularité des chemins de fer français.)

Exercice 4. Existe-t-il un espace métrique M avec plus d'un point mais les seuls ouverts sont M et \emptyset ?

Exercice 5. Démontrer que le rectangle $]a,b[\times]c,d[\subset \mathbb{R}^2$ est ouvert pour la métrique euclidienne.

Exercice 6. Démontrer que dans un espace métrique, un ensemble est ouvert ssi il est une union de boules ouvertes.

1 Exercices frigo

Exercice 7. Démontrer que dans un espace métrique les boules ouvertes sont ouvertes.

Exercice 8. Soit (M,d) un espace métrique, $x,y \in M$ et r,s > 0. Est-ce que B(x,r) = B(y,s) implique x = y? Et r = s?